
Not Your MPC, Not Your Coin

Yuto Takei

Mercari, Inc.

Abstract—A multi-party computation (MPC) wallet is being
developed as a cryptocurrency wallet that enables the distribution
of signing authority to multiple parties. Many vendors are devel-
oping MPC wallets based on different cryptographic protocols,
which can be readily installed by users, i.e., cryptocurrency
exchanges. However, for users, simply introducing the wallet
system provided by vendors poses a risk of secret key shares
being stolen without their knowledge. We will illustrate methods
to secretly steal key shares by exploiting the communication
channels with steganography or by modifying the protocol to
achieve a fault injection attack. One of the methods is using
the error correction capability in QR codes as a covert channel,
and another method is embedding hidden bits in the legitimate
communication of the underlying MPC protocol. Such attacks
can be executed by sophisticated threat actors targeting the
vendor’s codebase or through external software dependencies.
We will propose measures that user exchanges can implement to
address these risks and provide guidance for the secure use of
MPC wallets.

Index Terms—cryptocurrency, multi-party computation, QR
code, security, threshold signature, wallet.

I. INTRODUCTION

Protecting cryptocurrency wallets is a great responsibility

for exchanges that hold a large amount of assets. To minimize

the risk of asset loss or theft, significant efforts have been

made in the industry to secure transaction signing keys. In

recent years, a Multi-Party Computation (MPC) wallet has

been developed and started to be used in commercial scenarios.

The MPC wallet combines Distributed Key Generation (DKG)

and the Threshold Signature Scheme (TSS) techniques at the

cryptographic level, allowing multiple parties to own private

key shares and enabling the collective signing of cryptocur-

rency transactions.

An MPC wallet can be a quick solution to distribute signing

powers among multiple people while preventing individual

misuse. However, user exchanges should understand the secu-

rity model of the operating environment. In fact, certain risks

can be easily overlooked, such as by using a wallet provided

by a vendor without a security audit or risk assessment. While

wallet developers with a firm production management are

less likely to be compromised, one still cannot overlook the

possibility of sophisticated targeted attacks or internal threats.

The purpose of this paper is to demonstrate potential attack

vectors associated with vendor-provided MPC wallets and

possible mitigations from the user’s perspective. Our proposed

attacks exploit the system configuration to extract the user

exchange’s key. The explanations are initially provided using

a simple example between two parties constructing Schnorr

signatures, and we later mention the extension to realistic

protocols.

The contributions of this paper are as follows.

• We provide a simple toy model of an MPC wallet and

show techniques to hide messages in communication to

extract the user key.

• In the same model, we modify the cryptographic proto-

cols and explain a method to steal keys in a way that

appears normal in communication.

• We provide the direction of countermeasures for the

secure use of MPC wallets.

The remaining sections of this paper are structured as

follows. Section II explains the needs and reasons for using

MPC wallets, as well as an overview of the current landscape

surrounding MPC wallets. Section III presents prior studies

on cryptology that serve as the foundation for MPC wallets,

along with studies on usage and potential attacks against MPC

wallets. Section IV introduces a simplified target model of the

attacks proposed in Section V, which proposes attack methods

against this model. Section VI discusses the possibility of ex-

tending these attacks to commercially available MPC wallets.

Section VII offers recommendations for users and vendors to

mitigate risks against these attacks.

II. BACKGROUND

A. Distributing Signing Authority

To transfer cryptocurrency, the asset owner needs to sign

the transaction. There are several methods to distribute the

owner’s authority among multiple parties.

(A) Use of multi-signature addresses or smart contracts

(B) Secret sharing with a trusted dealer

(C) Combination of DKG and TSS

(A) requires multiple signers to provide their signatures to

validate the transaction. In Bitcoin, this can be achieved by

using an address with a Pay-to-Witness-Script-Hash format

script. In Ethereum, smart contract wallets can be used to

initiate transfers only if the signatures provided in calldata

are valid. These techniques simply rely on well-established

cryptography like ECDSA, but they can only be used when

the underlying blockchain has certain functionalities.

(B) and (C) can generate a digital signature that appears

to be from a single signing key. This means that there are

no specific technical requirements on the blockchain, and it

prevents the transaction fee increase associated with the size

of the signature data and computational costs of verification.

However, in (B), a trusted dealer is required. Since a trusted

dealer would have full knowledge of the signing key, user

exchanges may not be willing to accept the risk of a vendor

playing the dealer role. In contrast, (C) does not require

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

such a dealer. As the signing key is never computationally

recovered, there is no single point of weakness from a security

perspective. Compared to (B), this method is relatively new,

and the protocols are quite complex, which inherently comes

with the risk of unknown attack methods being discovered

or vulnerabilities in their implementation or usage (as this

paper suggests). There is also the possibility that the security

assumptions of some protocols may become compromised.

B. Multi-Party Computation and Wallets

Multi-party computation (MPC), as the name suggests,

refers to a type of protocol where multiple parties collectively

perform a specific computation. The protocols need to protect

the privacy of each party’s secret and ensure the correctness

of the computation result. Some protocols allow a certain

number of parties to be adversarial, meaning they may deviate

from the protocol. An adversarial party may actively spread

inconsistent messages to manipulate the result or collude with

other adversaries to leak secret information. Communication

channels between parties may also vary among protocols.

When assuming a synchronous network, all messages are

guaranteed to reach the destination party within a specific time

frame, or otherwise in asynchronous cases, no such guarantees

can be made even among honest parties.

In the context of cryptocurrency, MPC is used to implement

(C), i.e., to distribute secret shares among multiple subsystems

and generate a single signature while keeping each one’s share

private. A distributed system with such a mechanism is called

an MPC wallet. Even if some stakeholders who control a few

subsystems are misbehaving, an MPC wallet needs to ensure

that they cannot forge a signature, nor steal secret

Multiple vendors began providing MPC wallets from 2019.

As different protocols are being proposed by several research

groups, the protocols behind those implementations may vary.

Like other cryptocurrency wallets, MPC wallets have KEY-

GEN and SIGN protocols, and there is a need for message

exchanges among the parties in both of them. Messages can

be encoded in any format and exchanged over any channels.

In many protocols currently known, multiple rounds of

communication among parties are necessary, and research

efforts are made to reduce the number of rounds to improve

operational convenience, particularly for SIGN.

III. RELATED WORK

A. Threshold Signature Scheme

The threshold signature scheme (TSS) enables the parties

to create a signature without revealing each party’s secret.

Schnorr signatures [1] are considered to be TSS-friendly

due to their cryptographic structure. In the past, Stinson et

al. presented a method to thresholdize Schnorr signatures to a

(C, =)-setting [2]. In recent years, several protocols have been

developed, such as MuSig [3], FROST [4], and their variants.

EdDSA is one variant of Schnorr signatures and has many

similarities to standard Schnorr signatures in cryptographic

structures. There are several recent blockchains that natively

use EdDSA. One of the few differences is that EdDSA

derandomizes the nonce, which is determined from the public

key and message digest. Takahashi et al. have proposed an

attack method against schemes including Schnorr signatures

that can recover the key from slight biases in the nonce across

multiple signatures [5]. Although derandomization of the

nonce prevents those attacks in a regular setting, a malicious

party can extract secret shares in an MPC setting. Therefore,

the use of Pseudo-Random Functions (PRF) is proposed for

thresholdized Schnorr signature schemes [6], [7].

In contrast, ECDSA has a different signature structure than

EdDSA, and it has been used natively in the Bitcoin and

Ethereum blockchains. Several protocols have been proposed

[8]–[11] to thresholdize ECDSA, and they use different MPC

techniques under various security assumptions.

B. Studies on MPC Wallets and Attacks Against Them

There have been many studies on MPC wallets. Kondi et al.

proposed a protocol for an MPC wallet that incorporates the

technique of proactive secret sharing [12]. It can specifically

address cases where a few shares below the threshold may be

stolen by malicious third parties. Battagliola et al. proposed

another MPC wallet protocol with a (2, 3)-threshold that

explicitly operates with one party being completely offline for

emergency recovery [13]. Takei et al. have conducted a survey

and analysis on various wallet techniques at cryptocurrency ex-

changes and have also discussed the risks associated with using

MPC wallets [14]. They have proposed the implementation of

cold wallets using QR codes. Zhang et al. have implemented

an MPC cold wallet that communicates via QR codes [15].

From a cryptanalysis perspective, Aumasson et al. have il-

lustrated three methods for attacking TSS wallets by exploiting

flaws in subprotocols [16]. Some attacks target the sequence

of key reshare subprotocols while others target the lack of

proper verification for the range proof. Makriyannis et al. have

demonstrated a vulnerability in commercial MPC wallets [17].

IV. PRELIMINARIES

In this section, we introduce an MPC wallet system that

will be the subject of attacks. To simplify the explanation

of the attack methods, the protocol we introduce here is a

toy example involving two stakeholders: a wallet vendor V-

Inc and a user exchange U-Inc. The two parties in MPC are

vendor (party index 8 = 1) and user (8 = 2). They use additive

secret sharing for DKG and generate Schnorr signatures on

secp256k1 using TSS.

• � is the generator for a cyclic group with an order of a

large prime number.

• = is the order of the secp256k1 curve.

• |- | represents the bit length of message - .

• � ∥ � concatenates binary representations of � and �.

• � (-) is a message digest for binary representation of - .

• - [8: 9] refers to the substring of the bit-string represen-

tation of - , starting from the inclusive 8-th bit up to, but

not including, the 9-th.

A. Security Model

The vendor runs on the V-Inc’s server, while the user runs

in the wallet subsystem provided by V-Inc, for example, as a

software program or a dedicated hardware device. The U-Inc

has operator who uses the subsystem.

vendor and user are assumed to behave honestly at the

cryptographic level and not deviate from the protocol. Hence,

the protocol described later will omit the proof of knowledge

on their secrets and the blame phase to eliminate adversaries.

A communication channel between vendor and user is

synchronous and can be observed by operator, i.e., messages

will reach their destination within a time bound. operator will

not modify messages unless otherwise explicitly mentioned.

B. Protocol

We define two subprotocols: KEYGEN and SIGN (figure 1).

KEYGEN (one round): vendor picks a secret share B1 ran-

domly from [1, . . . , =), calculates a public share %1 = B1�,

and sends %1 to user. Then, user also picks B2 randomly

and sends back %2 to vendor in the same manner.

Both parties at the end will know the public verification key

. = %1 + %2.

SIGN (two rounds): For round 1, vendor picks a nonce A1

from [1, . . . , =) and sends A1� to user. Then, user also

picks a nonce A2 and sends A2� to the vendor.

For round 2, vendor sends the message-to-sign " and

' = A1� + A2� to user, and user computes the challenge

2 = � (' ∥ . ∥ ") and sends back the portion of the

signature I2 = A2 + 2B2.

Finally, vendor computes 2, I1 and I = I1 + I2, and

outputs the signature (', I).

vendor virtually plays the role of aggregating the signatures

in SIGN, but the aggregator here is not a trusted dealer. A

signature ('′, I′) generated by SIGN can be verified in the

same way as regular Schnorr signatures by checking I′�
?
=

'′ + � ('′ ∥ . ∥ "). .

V. PROPOSED ATTACKS

In this section, we demonstrate two potential methods of

extracting U-Inc’s key from user. There are several rounds of

bidirectional communication between vendor and user in both

KEYGEN and SIGN. During these message exchanges, user

may leak some information about the secret B2 secretively.

Note that V-Inc itself may not need to be malicious for such

attacks to be successful; on the contrary, that may be quite

rare in reality. It is more likely that the attack is done by an

individual employee in V-Inc, or by a malicious developer of a

third-party dependency in V-Inc’s codebase, or by an external

threat actor conducting sophisticated targeted attacks.

A. Exploiting Communication Channels

When considering the actual implementation of an MPC

wallet system, the wallet subsystems may exchange informa-

operator
can see:

K
E

Y
G

E
N

uservendor

B1 ← #

2 ← � (' ∥ . ∥ ")
I ← (A1 + 2B1) + I2

' ← A1� + A2�

B1�

B2�

A1�

A2�

A1 ← #

%← B1� + B2�

S
IG

N

"

(', I)

(", ')

I2

B2 ← #

%← B1� + B2�

A2 ← #

' ← A1� + A2�

2 ← � (' ∥ . ∥ ")
I2 ← A2 + 2B2

Fig. 1. An Example MPC Wallet Protocol

tion in various ways. Some of the commercially available

products adopts following methods for example:

(a) Human operators use the vendor’s website on an online

computer. They transfer JSON files containing transac-

tions to sign via USB sticks to offline computers that

hold secret shares.

(b) The user exchange prepares multiple smartphone devices

with secret shares: some are online and others are offline.

These devices communicate with each other via QR codes

and in-device cameras.

(c) The user installs wallet apps on their tablet devices. The

app securely stores the secret share, and they interact with

the vendor’s API.

We, as an attacker, modify SIGN subprotocol as follows.

SIGNMODTUPLE (modifies only round 1 of SIGN. The rest

is omitted.) : vendor picks a nonce A1 from [1, . . . , =), and

sends A1� and a tuple (query, ?, @) to user. Then, user also

picks a nonce A2 and sends A2� and (response, B2 [?:@]) to

vendor.

The modification of the subprotocol is that both parties have

started sending new tuples as underlined. The vendor stores

the received B2 [?:@] values. By signing multiple signatures

while changing the values of ? and @ to cover all the bits in

B2, the vendor gains complete knowledge of B2. Finally, the

vendor can recover the complete signing key B by B1 + B2.

These changes can also be introduced in round 2 of SIGN or

during KEYGEN.

1) Steganography using QR Codes: We now consider (b)

method. QR codes are standardized as ISO/IEC 18004 and

Algorithm 1 ENCODESTEGO(", ()

&' ← GENERATEQR(")

- ← |(| ∥ (

for 8 = 0→ ⌈|- |/2⌉ do

: ← - [28 : 2(8 + 1)]

if : ≠ 0 then

? ← 8(22 − 1) + :

C ← ⌊(? − 1 + RAND())1⌋

Flip C-th module of &'

end if

end for

return &'

are used worldwide in various scenarios, including electronic

payments. They can be used to transfer data between air-

gapped devices in proximity with only a camera and a display.

Animating QR codes may allow even larger data transmission.

As mentioned in Section III, there are several studies on

cryptocurrency wallets that use QR codes.

QR codes use Reed-Solomon coding and have high error

correction capability. We propose a method of embedding

hidden data by intentionally flipping some pixels (called

modules in the QR code specification).

As algorithm constants, we determine the block size 1 and

the chunk size 2. We denote the data to be regularly encoded

as " , and to be hidden as (.

ENCODESTEGO : Generate a QR code by encoding " as

usual. Let - be the concatenation of the binary representation

of the length of (and (itself. Slice - into chunks of 2

bits from the beginning. Each chunk corresponds to (22 − 1)1

modules on the QR code in order. If the chunk has any value

other than 0, randomly reverse one of the modules between

the (: − 1)1-th and :1-th within that corresponding range.

DECODESTEGO : Decode the scanned QR code using the

regular method to obtain message " . Then, find a set of

flipped positions between a regular QR code encoded with

" , and the QR code used to extract the hidden data. From the

indices of the flipped modules, execute the inverse operations

of encoding to restore - , an array of the 2-bit chunks with

the entire length prefixed. Read the first bits to get |(|, and

recover the hidden data (.

The pseudocodes are shown in Algorithm 1 and 2.

Note that the same 1, 2, and QR code generation algorithm

must be used on both the encoding and decoding sides.

The amount of data that can be hidden with this method is

proportional to the length of " . For example, to embed <

bits, approximately ⌈</2⌉ (22 − 1)1 data zone modules are

necessary as a minimum, and the error rate of modules will

become 1/221 at maximum.

QR codes have four levels of error correction capability, and

the highest level, H, can recover up to approximately 30% of

overall scanning errors. It is seemingly most efficient to choose

1 = 1, 2 = 2. In reality, we are exchanging error correction

Algorithm 2 DECODESTEGO(&')

" ← DECODEQR(&')

� ← DIFF(&', GENERATEQR("))

- ← [0, . . .]

for all C ∈ � do

? ← ⌊C/1⌋

8 ← ⌊?/(22 − 1)⌋

: ← ? − 8 · (22 − 1) + 1

- [28 : 2(8 + 1)] ← :

end for

(;4=, () ← DECOMPOSE(-)

return (", ()

capability to hide the data, and the generated QR code is

more susceptible to scanning errors, or the generated QR code

may become unreadable due to the arrangement of modules.

We consider it acceptable in this situation since the devices

communicate in close proximity when used as cryptocurrency

wallets. Nonetheless, the length of the data to hide should be

decided conservatively.

As an example, Figure 2 shows (a) a normal QR code and

(b) a QR code with steganography embedded “A hidden

message.” The flipped modules are framed in red. It is

created with parameters 1 = 3, 2 = 3, and |(| in - is a fixed

9-bit size. This size of QR code, called version 5, has 37

modules squared, excluding the outer area called the quiet

zone, and can encode binary data up to 44 bytes. With 1,043

data zone modules, this method can hide up to approximately

18 bytes. (c) shows the overview of the ENCODESTEGO

algorithm, and (d) shows one example of ordering modules

with steganography in a QR code, left-to-right, top-to-bottom

in non-reserved data zones. The order of data zone modules

can be arbitrarily decided in this method, unrelated to that of

QR code specifications.

2) Communication over Encrypted Channel: Online wal-

lets, also known as hot wallets, may work as (c). In this case,

user may authenticate vendor and verify the integrity of the

message. The communication in transit would be encrypted

and become opaque in some cases.

The benefit of message encryption is that the secret shares

of both parties are secured from any man-in-the-middle, if the

security assumptions of DKG or TSS protocols are broken

in the future. On the other hand, the drawback is that any

party can hide arbitrary messages including secret shares

in the complete blackbox, which even eliminates the need

for steganography techniques. From U-Inc’s perspective, this

means that the source of the risk is shifting from any man-in-

the-middle to V-Inc after the channel encryption.

B. Concealing in Random Numbers

In round 1 of SIGN, both parties exchange a nonce. These

random numbers can also be used as communication channels.

This type of attack is known as a fault injection attack. We

use a few bits of A1� and A2�.

(a) Original

(b) Embedded

Finder pattern

Alignment pattern

Format

Version

Timing pattern

Encodable zone

(c) Module counting (example)

(d) Creating QR code with embedded data

|(| (

6 < T e s t >Data to embed

Bit array (-) 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0

Convert to
(22 − 1)-bit blockBitmask

2-bit chunks
(showing case of

2 = 2)1 2 0 3 3 10

within 1 modules
to XOR with regular QR code modules

Pick randomly

(case of 1 = 2)

Expanded

Fig. 2. QR Code Example with Hidden Data

SIGNMODRAND (modifies only round 1 of SIGN. The rest is

omitted.) : vendor picks a nonce A1 such that (A1�) [0:|? |]

represents ?, and sends A1� to user. Then, user decodes

(A1�) to recover ?, and picks a nonce A2 such that the most

significant bit of A2� represents (? + 1)-th bit of B2, and

sends A2� to vendor.

Assuming that B2 is picked from a sufficiently random

source, we can consider the probability of each bit being 0

or 1 to be equal. As a result, A2 chosen by the method above

is also randomly distributed. ' in the signature takes the form

of (A1 + A2)�, where A2 acts as a masking factor to conceal

any bias in A1.

This method exploits the actual data channel. This technique

can be seen in the previous work on subliminal channels by

Simmons [18]. Since legitimate communication is exploited,

it becomes much harder for operator to notice. Note that this

method cannot be applied in non-randomized protocols such

as EdDSA, or Schnorr’s deterministic signing TSS variants.

VI. APPLICABILITY TO REAL-WORLD SCENARIOS

A. Differences in MPC Protocols

The technique discussed in Section V-A, which exploited

the communication channel, does not rely on the cryptographic

structure. It allows attackers to gradually steal secret shares as

long as there is round-trip communication. This attack can be

extended regardless of the parameters C, =, or the protocol if

all shares are managed in the same way.

To the best of the author’s knowledge, there are currently no

commercial MPC wallet products available that allow parties

from different vendors to operate as a single wallet. In other

words, when using an MPC Wallet, all secret shares must be

held by the same wallet subsystem from the same vendor. If

this subsystem is compromised, all key shares can be easily

stolen.

Moreover, this attack is not limited to specific means of

communication. In Section V, we provided one possible ex-

ample of hidden data communication via QR codes. The attack

can still be executed even in protocols where certain parties

are mostly offline, e.g., [13]. Suppose that signatures can only

be generated by online nodes, the attack can be completed by

stealing these online shares. Conversely, if the participation

of offline nodes is necessary, the attack can be successful by

exploiting the message to/from the offline nodes. This implies

that even wallets that claim to be secure in a disconnected

environment may still have the potential to unintentionally

expose a secret key to external entities through some form

of communication.

An exception to this is protocols that employ proactive

secret sharing, such as [12]. In this method, regular resharing

is performed, where the key shares are redistributed and old

shares are removed from each node. This helps to keep the

total number of compromised shares below the threshold. Yet,

if there is a bug in such a reshare protocol, it can lead to

a different attack where adversarial nodes can force honest

nodes to delete their valid share.

B. Eliminating Bias in Nonce

Since a nonce is used in Schnorr signatures, ECDSA, and

their variants, there is a step in their TSS protocols to exchange

random numbers among parties. In Section V-B, we explained

that ' = A1� + A2� is not biased because A2, which has a

single bit from the secret share B2, has sufficient randomness

and works as a mask for A1. We revisit this step to review the

randomness of ' in another protocol, although an adversary

who intends to steal the key would not pay attention to

eliminating bias in the nonce.

With FROST [4], two random numbers, 3 and 4, are used

as nonces. We denote the set of signers as & = {1, . . . , C}.

Party 8 generates random 38 and 48 , and all parties exchange

�8 = 38� and �8 = 48� with each other to obtain � =

⟨(�1, �1), . . . , (�C , �C)⟩ and d = � (" ∥ �). When each

party constructs their part of the signature I8 = A8 + 2B8 ,

instead of using A8 , they use 38 + 48d. The signature (', I)

becomes (
∏
(�8 + d�8),

∑
I8). If C ≠ =, the last term of

I8 above should be multiplied by the Lagrange coefficient

_8 =
∏

9∈&, 9≠8 9/(9 − 8).

If an adversarial party 8 tries to conceal some bits in this

protocol, the party may exploit �8 to embed the hidden data

because �8 is multiplied by d, the message digest of " and �.

This way, a single party, the vendor, can broadcast the index

? to query, and all the other compromised parties, user8 , can

respond with their ?-th bit of secret shares B8 simultaneously,

without modifying the original FROST protocol and without

introducing bias in the final '.

VII. RECOMMENDATIONS FOR RISK MITIGATIONS

A. Sanitization of Data in Transit

The attack methods proposed in Section V-A focus on

exfiltrating the secret by exploiting the communication chan-

nel. To prevent this type of attack, vendors should disclose

the technical details about the implementations and the data

structure.

User exchanges should not blindly let the communicated

information pass. Rather, they should prepare a mechanism

that allows for inspection and sanitization of data in transit.

More specifically, the users can:

• Eliminate unnecessary fields in the data structure and

decode and re-encode serialized data to prevent covert

channels from being exploited.

• Introduce randomized delays in messaging to remove the

timing side channel.

B. Source Code Audit and Disclosure

To prevent the extraction of the secret through legitimate

channels, as in Section V-B, conducting an audit against the

wallet system’s source code becomes an option. The vendors

should:

• Disclose the audit reports on the source code by a third

party, which state the exact versions of the tools they

provide to users. This audit should consider attack vectors

through third-party dependencies.

• When upgrading tools, obtain a bridge letter from the

audit firm to ensure that the previous audit report remains

valid.

• Open-source the related tools, or at the very least, dis-

close them to the user exchanges under a non-disclosure

agreement.

Particularly, open-sourcing the tool may benefit vendors as

it allows them to receive security vulnerability reports from

external parties.

What the users should do includes:

• Independently verify the integrity of the tools provided

by vendors.

• Review the audit reports, and verify the scope, version,

and audit findings.

• If necessary, build and deploy the tools from the source

code on their own.

If the vendor does not disclose the source code or the audit

results, the Service and Organization Controls (SOC) 2 report

can be an alternative to assess the vendor’s organizational

controls on security and integrity for their operation.

A key aspect of third-party audits is that the viewer of the

audit report, a user company, is exchanging the credibility of

the audited company and vendors for the credibility of the

auditing firm. Hence, it is essential for vendors to choose an

auditing firm that is confident, reputable, and trustworthy.

VIII. CONCLUSION

Using an MPC wallet offers several advantages within an

enterprise organization. One key benefit is the ability to trans-

fer cryptocurrency on virtually any blockchain by distributing

signing authorities without the need for a trusted third party.

Nevertheless, it is critical to recognize that vendor-provided

MPC wallets also come with their own set of risks. The com-

plexity of the MPC protocol and reliance on vendor software

may delay the discovery of vulnerabilities in the wallet. Many

vendors offer MPC wallets as a SaaS model, which prevents

air-gaps and requires bi-directional communication due to the

nature of the protocols behind them. User exchanges should

carefully consider these factors, especially when managing a

large amount of assets on it.

We have demonstrated the possibility of attackers stealing

keys by using tampered wallet software, particularly as a

sophisticated threat actor on the vendor side. Techniques

like steganography or exploiting the randomness within the

protocols can help easily hide data. To mitigate these risks,

user exchanges need to have a good understanding of the

cryptographic background of the MPC wallet being used,

conduct audits of the code provided by the vendor, or even

develop their own tools for message inspection. MPC wallet

vendors should consider open-sourcing the core cryptographic

operations, or at least disclose them to the user exchanges.

This not only reduces the risk of software tampering from

cyber attacks but also ensures transparency.

REFERENCES

[1] C. P. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology — EUROCRYPT ’89, vol. 434 LNCS, 1990.

[2] D. R. Stinson and R. Strobl, “Provably secure distributed Schnorr
signatures and a (t, n) threshold scheme for implicit certificates,” in
Information Security and Privacy, vol. 2119 LNCS. Springer Berlin
Heidelberg, 2001.

[3] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Simple Schnorr
multi-signatures with applications to Bitcoin,” Designs, Codes, and

Cryptography, vol. 87, 2019.

[4] C. Komlo and I. Goldberg, “FROST: Flexible round-optimized Schnorr
threshold signatures,” in Selected Areas in Cryptography, vol. 12804
LNCS, 2021.

[5] A. Takahashi, M. Tibouchi, and M. Abe, “New Bleichenbacher records:
Fault attacks on qDSA signatures,” IACR Transactions on Cryptographic

Hardware and Embedded Systems, vol. 2018.

[6] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille, “MuSig-DN: Schnorr multi-
signatures with verifiably deterministic nonces,” in Proceedings of the

ACM Conference on Computer and Communications Security, 2020.

[7] C. Bonte, N. P. Smart, and T. Tanguy, “Thresholdizing HashEdDSA:
MPC to the rescue,” International Journal of Information Security,
vol. 20, 2021.

[8] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ECDSA with
fast trustless setup,” in Proceedings of the ACM Conference on Computer

and Communications Security, 2018.
[9] Y. Lindell and A. Nof, “Fast secure multiparty ECDSA with practical

distributed key generation and applications to cryptocurrency custody,”
in Proceedings of the ACM Conference on Computer and Communica-

tions Security, 2018.
[10] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Threshold ECDSA from

ECDSA assumptions: The multiparty case,” in Proceedings - IEEE

Symposium on Security and Privacy, vol. 2019-May.
[11] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled,

“UC non-interactive, proactive, threshold ECDSA with identifiable
aborts,” in Proceedings of the ACM Conference on Computer and

Communications Security, 2020.
[12] Y. Kondi, B. Magri, C. Orlandi, and O. Shlomovits, “Refresh when

you wake up: Proactive threshold wallets with offline devices,” in
Proceedings - IEEE Symposium on Security and Privacy, vol. 2021-
May.

[13] M. Battagliola, R. Longo, A. Meneghetti, and M. Sala, “Threshold
ECDSA with an offline recovery party,” Mediterranean Journal of

Mathematics, vol. 19, 2022.
[14] Y. Takei and K. Shudo, “Pragmatic analysis of key management for

cryptocurrency custodians,” in 2024 IEEE International Conference on

Blockchain and Cryptocurrency (ICBC), May 2024, pp. 524–542.
[15] H. Zhang, X. Zou, G. Xie, and Z. Li, “Blockchain multi-signature

wallet system based on QR code communication,” in Communications

in Computer and Information Science, vol. 1736 CCIS. Springer Nature
Singapore, 2022.

[16] J.-P. Aumasson and O. Shlomovits, “Attacking threshold wallets,” 2020.
[Online]. Available: https://eprint.iacr.org/2020/1052

[17] N. Makriyannis, O. Yomtov, and A. Galansky, “Practical key-
extraction attacks in leading MPC wallets,” 2023. [Online]. Available:
https://eprint.iacr.org/2023/1234

[18] G. J. Simmons, “The prisoners’ problem and the subliminal channel,”
in Advances in Cryptology: Proceedings of Crypto 83. Springer US,
1984.

https://eprint.iacr.org/2020/1052
https://eprint.iacr.org/2023/1234

	Introduction
	Background
	Distributing Signing Authority
	Multi-Party Computation and Wallets

	Related Work
	Threshold Signature Scheme
	Studies on MPC Wallets and Attacks Against Them

	Preliminaries
	Security Model
	Protocol

	Proposed Attacks
	Exploiting Communication Channels
	Steganography using QR Codes
	Communication over Encrypted Channel

	Concealing in Random Numbers

	Applicability to Real-World Scenarios
	Differences in MPC Protocols
	Eliminating Bias in Nonce

	Recommendations for Risk Mitigations
	Sanitization of Data in Transit
	Source Code Audit and Disclosure

	Conclusion
	References

	

