
Pragmatic Analysis of Key Management for
Cryptocurrency Custodians

Yuto Takei
Mercari, Inc., and

Tokyo Institute of Technology

Kazuyuki Shudo
Kyoto University

Abstract—We discuss key management for cryptocurrencies
from the perspective of security and risk management. While we
found many earlier research studies about the implementation
and security of wallets, few of them provide a comprehensive
analysis of real-world integration as a complex system. We
particularly focus on cryptocurrency custodians, who have to
tightly control the risk to meet business needs as well as
regulatory requirements. Unlike individual use cases, to manage
substantial amounts of various assets, they typically need more
complex wallet configurations and operations, such as multiple
layers of hot and cold wallets in combination with different
types of implementations. Therefore, we discuss the suitability of
various wallet techniques, including software, hardware, HSMs,
smart contracts, or cryptographic methods. We also address
several open challenges for custodians mentioned in earlier work.
Furthermore, as the ultimate example, we propose Extreme-Cold,
a reference cold wallet in an air-gapped environment. It is
resistant to side-channel attacks studied in earlier research. The
risk assessment we conduct on Extreme-Cold demonstrates the
effectiveness of our systematized knowledge.

Index Terms—cryptocurrency, wallet, security, cryptography,
key management system, digital signature

I. INTRODUCTION

Cryptocurrencies have gained worldwide popularity as fi-

nancial assets, with their market capitalization often surpass-

ing one trillion dollars between 2021 and 2024. Owners of

cryptocurrencies must effectively manage their private keys,

which are essential for initiating transactions. This objective

becomes even more critical for custodians of cryptocurrencies,

such as exchanges or payment service providers, considering

the significant scale of assets they handle.

The management of cryptographic keys has been a subject

of study for a long time, even before the birth of cryptocurren-

cies [1]. It has been known that there is a dilemma between

measures to prevent damage or loss of cryptographic keys

through replication, and measures to enhance encryption and

authentication to prevent leakage or unauthorized use of keys

[2]. Therefore, organizations responsible for handling crypto-

graphic keys must find a balance and invest appropriately.

While there have been numerous studies on the management

of private keys in the context of cryptocurrencies [3], many

of these studies have focused on wallets suited for individu-

als. Some researchers propose wallet implementations, while

others discuss attack methods against existing wallets.

However, when considering cryptocurrency custodians, it

is necessary to take into account not only the perspective of

standalone wallets but also broader factors such as physical

and human elements. Additionally, the business environment

related to wallet management must be considered in certain

cases. Jaroucheh et al. conducted a review from the perspec-

tive of custodians, addressing token classification and wallet

technologies [4]. In their study, they highlighted several open

challenges in wallet technology, such as regulatory differences,

unknown security risks, transparency of wallet implementa-

tion, and cost. Many cryptocurrency custodians, including the

ones the author has affiliated with, have already encountered

and discussed these considerations in reality, even in the

absence of extensive existing research literature.

Hence, this paper examines the pragmatics of cryptocur-

rency custodianship and aims to fill the gaps in the literature

on effective practices for private key management.

The main contributions of this paper are as follows:

• Investigating literature on cryptographic key management

from before the emergence of cryptocurrencies, and ex-

ploring the connections to wallet technologies.

• Examining wallet technologies from the enterprise scale

managing substantial assets, and analyzing their security.

• Considering management strategy across multiple wallets,

such as hot and cold, common for exchanges.

• Proposing a reference cold wallet implementation,

EXTREME-COLD and conducting actual risk analysis

based on this implementation.

This paper is structured as follows. In Section II, we first

review the historical development of cryptographic key man-

agement techniques, ranging from previous literature to recent

approaches in the general Internet industry. In Section III, we

model the signing system of cryptocurrency custodians and

consider various approaches to evaluate its security and poten-

tial threats. In Section IV, we consider unique requirements

for cryptocurrency exchanges, such as regulations of solvency

and audits. In Section V, we explore different wallet options,

analyzing the strengths, weaknesses, characteristics, and risks

associated with each technology. In Section VI, we discuss the

evaluation criteria for building new wallets in cryptocurrency

custodians. In Section VII, we propose a cold wallet con-

figuration called EXTREME-COLD for demonstration, which

operates in a highly secure and self-managed environment

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works.

to enhance risk management transparency. In Section VIII,

we provide the evaluation of EXTREME-COLD, based on the

aspects proposed earlier. Finally, in Section IX, we conclude

by showing the future direction of the research.

II. BACKGROUND

A. Genesis of Cryptographic Key Management

Cryptographic key management has been a significant con-

cern even before the development of cryptocurrency. Initially,

it was mainly studied for military purposes. With the rise of

computers, the importance of key management became even

more apparent. This is evident from literature dating back to

the 1970s, which is still relevant today.

In a study by Popek et al., various cryptographic techniques

were examined known at the time in 1979, along with their

applications and associated issues [5]. They mentioned the

importance of keeping cryptographic systems simple in design.

They also highlighted the need for key backups and the

protection of them as secure as the originals. In the same

year, Blakley classified incidents related to human involvement

in key management into three types: abnegation, betrayal, or

combination incidents. They formulated the number of key

copies an organization should keep based on their protection

requirements [2]. Additionally, Shamir introduced a scheme

for securely distributing a secret value among multiple parties,

which is widely used today [6]. Later, Fumy et al. provided

a systematic approach to designing key management services

(KMS) [1]. They discussed technical requirements throughout

the key’s lifecycle, including generation, distribution, activa-

tion, and deletion. They also emphasized the importance of

prohibiting plaintext access to private keys.

In the financial sector, the need for key management prac-

tices led to the compilation of ANSI X9.17 by practitioners

in the US banking industry in 1985. This standard defines

key management practices and encryption techniques for both

manual and automated processes [7]. Based on this, the US

government established FIPS 171, which provides guidelines

for cryptography usage in general government information

systems. This standard has been continuously updated and is

currently known as NIST SP 800-57.

B. Key Management for Internet Infrastructures

The widespread use of the Internet has made key manage-

ment essential in the communication industry. One notable

scenario is Pretty Good Privacy (PGP), which is an ad-hoc

messaging network [8]. In PGP, each participant generates a

key pair and exchanges the public key with their peers to

enable sender authentication and message encryption. This

concept is sometimes referred to as the Web of Trust, and

several research studies have been conducted, such as [9].

On the other hand, Public Key Infrastructure (PKI) and DNS

Security Extensions (DNSSEC) are well-known technologies

that propagate trust hierarchically within a specific authorita-

tive domain. Participants in these systems maintain a prede-

fined set of trusted institutions, known as trust anchors. Users

can trust lower entities certified by these trusted institutions,

forming a Chain of Trust.

PKI, standardized by X.509 [10], defines the commonly-

used format of a digital certificate. Users keep self-signed

certificates issued by Certificate Authorities (CAs) as trust

anchors, and CAs sign certificates for subordinate entities

using their private keys. If a CA’s private key is compromised,

all subordinate certificates become untrustworthy. There was

an incident in the past, where public CAs operating on online

servers were breached, resulting in significant damage [11].

Currently, CAs issuing public TLS certificates are required to

comply with the Baseline Requirements (BR) specified by the

CA/B Forum for operational safety [12]. The BR mandates

that root CAs operate offline or in an air-gapped environment,

with explicit human operation required for signing certificates.

DNS Security Extensions (DNSSEC) [13] are a set of

protocols used to digitally sign and validate DNS zones. It

establishes a chain of trust starting from the digest of the Root

Key Signing Key (KSK) public key. The Root KSK is man-

aged in an air-gapped environment by the Internet Assigned

Numbers Authority (IANA). They have made all operations

involving the Root KSK public to ensure transparency in

internet operations [14], which serves as a leading example

of critical key management.

The US government has published several documents in the

field of key management. NIST SP 800-57, mentioned earlier,

provides comprehensive guidance on key management [15]. It

categorizes different types of cryptographic keys and provides

guidance on their lifecycle management. NIST SP 800-130

[16], which is closely related to the previous one, focuses

on the Cryptographic Key Management System (CKMS) and

includes design requirements. There are also standards for

cryptographic modules and digital signature algorithms: FIPS

140 [17] and FIPS 186 [18] mentioned later in Section V-C.

The IETF provides a decision guideline in RFC 4107 [19]

to determine whether key management should be automated

or manual. It strongly recommends an automated approach,

except in rare situations where the encrypted data has low

monetary value or where encryption frequency is low.

C. Context in Cryptocurrency and Blockchain

The history of cryptocurrency begins with the invention of

Bitcoin [20]. In many cryptocurrency systems, a blockchain (or

a distributed ledger) is used to record the associations between

addresses and their cryptocurrency balances. An address is

derived from a public key, and transactions are recorded on

the blockchain to transfer cryptocurrency from one address

to another. Each transaction requires a signature from the

private signing key associated with the originating address(es).

A mechanism to keep signing keys is often called a wallet.

Managing signing keys securely and accurately retrieving

recipient addresses is crucial for cryptocurrency owners to

successfully transfer funds. This technical landscape is similar

to the era of PGP, and it is often described as decentralized.

Some cryptocurrencies even offer enhanced anonymity to

further promote decentralization [21].

Signing system KeyGen

Sign

Data to sign

Entropy source

Signing key Signed data

Public key

Fig. 1. Model of Signing System (SIG-SYS)

Eskandari et al. conducted one of the first analyses of

personal key management in Bitcoin [3]. Bonneau et al.

extensively examined the architecture of Bitcoin, including the

challenges of key management, and discussed general research

topics [22]. There are also other studies discussing wallets for

cryptocurrencies in general [23], [24].

Secure key management in cryptocurrency custodians has

been developed and improved over time, driven by major

incidents. There have been cases where cryptocurrencies were

unlawfully transferred due to private key leakage [25], [26],

cases where signing keys were misappropriated to divert

funds [27], [28], and cases where cryptocurrencies became

permanently frozen because encrypted signing keys could no

longer be decrypted [29]. However, it is important to note that

new incidents continue to occur. Oosthoek et al. conducted a

comprehensive review of past incidents [30].

D. Other Recent Studies

Many systems are operating in cloud infrastructures in re-

cent years, including cryptocurrency exchanges. Chandramouli

et al. discussed the challenges of cryptographic key manage-

ment over virtual machines, storage, and databases in the cloud

[31]. Similarly, Kuzminykh et al. compared and analyzed

various KMS products [32]. These studies may be beneficial

when designing an online wallet architecture.

Xiao et al. evaluated the security of complex authenti-

cation from a reliability engineering perspective [33]. They

formulated the successful attack rate based on the Mean Time

Between Failure (MTBF) of a single key. This approach may

be extended to evaluate the security of a multi-signature wallet.

Rana et al. extensively examined the architecture of KMS

for various types of cryptographic algorithms [34].

III. PROTECTING SIGNING SYSTEM

A. Model

We introduce an abstract model of a signing system, referred

to as SIG-SYS, to discuss its security characteristics. As

depicted in Figure 1, SIG-SYS holds the cryptographic key

internally, which digitally signs data.

This model does not depend on any specific signing algo-

rithms or curves, as long as the protocol itself is secure. It can

accommodate algorithms like secp256k1 used in Bitcoin, or

non-standard signing methods. It is important to note that even

if the cryptographic keys are securely handled, potential flaws

in the signing protocols can still lead to key leakage.

(c) Distributed

(a) Manually operated

(b) Replicated

System A

System B clone

communicate

Fig. 2. Variants of SIG-SYS

From an external perspective, SIG-SYS can be viewed as a

black box. It provides two interfaces:

• KeyGen generates a private signing key (referred to as

B:) from the entropy source. It does not take any input.

It outputs the corresponding public key (?:).

• Sign uses B: to sign the input and produces the signature.

It may also perform additional verifications on the input.

To ensure the security of these interfaces, appropriate

mechanisms should be implemented to authorize users or

external systems. They can be integrated within SIG-SYS or

implemented as additional security layers outside it.

In addition, SIG-SYS may define Destroy for destroying

B: , which is not suitable for cryptocurrencies. To the best of

the author’s knowledge, there are no blockchains that allow

the decommissioning of addresses. We do not recommend the

destruction of B: and will not discuss it further in detail.

Figure 2 shows different variants of the SIG-SYS. As

depicted in (a), SIG-SYS may not always be fully automated.

In certain cases, such as an air-gapped system, manual or

mechanical mechanisms may be required.

Furthermore, SIG-SYS may consist of multiple components

rather than being monolithic. For example, one component

may hold B: and transmit the encrypted version of it to another

component for higher availability, as shown in (b). It is also

possible to distribute B: across multiple terminals, as depicted

in (c), using secret split techniques discussed in Section V-G.

B. Security Analysis using Formal Approaches

The following two requirements should be met:

1) Any bit of B: is kept within the SIG-SYS’s boundary.

2) Data should only be signed by B: if and only if requested

via Sign, and no other signature is generated.

These requirements can be verified using formal methods,

especially for synchronous software implementations.

For distributed implementation with multiple processes,

Lamport’s method for proving the correctness of multi-process

software [35] can be employed. This involves demonstrating

the following safety properties, which ensure that the system

does not reach undesirable states:

• B: remains unchanged and is not lost.

• Any output from SIG-SYS does not contain any unen-

crypted bits of B: .

• The output from Sign corresponds to its input.

as well as the following liveness properties, which ensure that

the system eventually reaches the desired states:

• B: will eventually be generated after KeyGen is called.

• A digital signature by B: will eventually be generated for

a message < after Sign is called with the input <.

However, it is often challenging and costly to thoroughly

formalize cryptographic processes.

C. Security Analysis using CIA Triad

As an alternative to formal methods, the security of an

information system can be evaluated using the principles of

confidentiality, integrity, and availability, commonly known as

the CIA triad [36], [37]. Each represents a specific require-

ment: (C) ensuring that secret information does not leave the

system’s boundary, (I) preventing unauthorized modification

of information and the system’s processes, and (A) ensuring

that the system can operate when necessary. For example,

Warkentin et al. [38] examined the security of blockchain

applications for the public sector using the CIA triad.
SIG-SYS can employ multiple layers of authentication and

encryption to prevent the leakage or misuse of B: , enhancing

(C), or B: can be duplicated for backup to avoid damage or

loss, enhancing (I) and (A). These measures are in conflict with

each other, and a rational balance needs to be maintained.
The following considerations should be taken into account:
1) Confidentiality of B:: Insufficient entropy or improper

implementation of random number algorithms are common

causes of vulnerabilities. Predictable random numbers can be

exploited in attacks, where the seed value can be guessed.

Such attacks on random number generators (RNGs) have been

studied extensively on various operating systems [39], [40].

Side-channel attacks, which recover keys from electromagnetic

radiation during signing, also exist for RNGs [41]. Weak keys

for cryptocurrency wallets can result in the loss of funds, and

there have been reported cases of successful attacks [42].
2) Integrity of SIG-SYS: Bits of B: may be embedded as

steganography in the output of Sign if SIG-SYS is maliciously

tampered with, including a malicious act of operators. This

risk has been suggested by Guri as a method of stealing a

cryptocurrency wallet from an air-gapped environment [43].
3) Integrity of KeyGen’s Output ?:: To prevent attackers

from stealing funds by modifying the output of KeyGen

within SIG-SYS’s boundaries, the user must ensure the authen-

ticity of ?: . One can test a small amount withdrawal from the

?:’s address as the simplest countermeasure.
4) Integrity of Sign’s Input <: Similar to the above, an

attacker may tamper with the pre-signed data to redirect the

cryptocurrency transfer. The user should not rely on SIG-SYS’s

integrity, and rather validate the output of Sign.

D. Threats

There are various threats that compromise the security of

SIG-SYS. We can analyze threats by their origin:

1) External Threats to the System: In a hostile environ-

ment, attackers may try to generate fraudulent Sign requests

by bypassing the authentication of SIG-SYS or by stealing

the private key through logical or physical means. Natural

disasters can also damage the availability of SIG-SYS.

2) Internal Threats to the System: Internal components of

SIG-SYS may also be adversarial. If SIG-SYS is implemented

in software or hardware, there may be intentional or unin-

tentional defects introduced by the developers. If humans are

involved in the process of SIG-SYS, it is important to mitigate

risks of misconduct such as information leakage, denial of

tasks, and destructive acts, as suggested by Blakley [2].

E. Security Considerations in the Use of Cryptography

1) Hidden Number Problem: In ECDSA [44], an attacker

can calculate the private key from multiple signatures with

the same nonce. This type of attack, known as the Hidden

Number Problem [45], has been studied in other cryptographic

algorithms as well. The nonce reuse problem in ECDSA

is addressed in RFC 6979, which proposes a deterministic

method to choose the nonce from the message to sign [46].

2) Noncanonical Encoding: Transaction malleability, as

seen in Bitcoin, allows an attacker to produce different trans-

actions while preserving the digital signature. One technique

used for this type of attack is to exploit the fact that both (A, B)

and (A,−B) are equally valid ECDSA signatures. A group of

attackers successfully forged transactions depositing Bitcoin

into Mt.Gox [47]. Cryptocurrency exchanges need to perform

strict validations and ensure the canonicality of such different

instances of transactions or signatures.

IV. SPECIFICS TO CRYPTOCURRENCY EXCHANGES

A. Architecture and Operations

Most cryptocurrency exchanges facilitate the swap between

legal currency and cryptocurrency, as well as process users’

deposits and withdrawals. They manage wallets to keep cus-

tomers’ funds typically in their custody. They may also operate

blockchain nodes to monitor transactions, as discussed later

in Section V-A. There is an IEEE Standard about the modern

cryptocurrency exchange’s architecture [48].

Some exchange operators rely on external blockchain APIs

to simplify their architecture. They need to ensure the accuracy

of incoming information and the availability of the system, for

example, by connecting to multiple APIs and data sources.

1) Deposit: Exchanges assign a unique deposit address to

each customer upon request and monitor transfers to deposit

addresses. The customer’s account balance is updated accord-

ingly once the deposits are confirmed.

Certain blockchains allow additional data to be attached

to transactions, such as a message in Symbol, a tag in

Ripple, and a memo in Stellar. Exchanges may specify unique

data per customer while providing the same deposit address.

This approach helps simplify the wallet structure and reduce

Depositors Withdrawers

Hot wallet (e.g. Bitcoin Core)

Depositors

Change /

Reserve

Withdrawers

Deposit /

Reserve

Cold wallet

(b) Hot-only configuration

(c) Cold-deposit configuration

Hot wallet

Deposit / Change / Reserve

Depositors Withdrawers

Hot wallet

Cold wallet

(a) Hot / Cold configuration

Deposit

Change / Reserve

Reserve

denotes a set of addresses

denotes a flow of cryptocurrencies

Fig. 3. Various Wallet Management Configurations

transaction costs. However, such information can also be used

for tracking by third parties [49], and some exchanges offer

multiple deposit addresses to address privacy concerns [50].

2) Withdrawal: When a customer requests a withdrawal,

exchanges initiate an outgoing transaction from their wallet.

It is common for exchanges to automate these withdrawals,

but they are also required to screen for suspicious requests to

prevent financial crimes, which may take several hours.

3) Wallet Management: The configuration of wallets in

modern exchanges is depicted in Figure 3 (a). Hot wallets are

online signing systems that are connected to other systems in

exchanges. They are designed for immediate withdrawals. On

the other hand, cold wallets are offline or air-gapped systems

that aim to provide more secure storage. This configuration

offers several advantages:

• Different security policies can be applied based on the

temperature of the wallet.

• For Bitcoin-like cryptocurrencies, exchanges can save on

transaction fees by optimizing the selection of unspent

transaction outputs (UTXOs).

Figure 3 (b) illustrates the configuration of a Bitcoin ex-

change in its early days based on the author’s experience. The

exchange hosted its wallet using software and the wallet was

connected online during blockchain synchronization.

As an alternative to the typical configuration, exchanges

can use cold wallets for customer deposit addresses, as shown

in Figure 3 (c). Since there is usually no immediate need to

withdraw from these addresses, cold wallets provide a suitable

option. However, exchanges may still need to prove their

control over these addresses for compliance reasons [51].

It is important to carefully design the wallet management

configuration as it can be difficult to change afterward.

B. Regulations

Cryptocurrency exchanges are regulated by authorities in

many countries. Although the regulations differ according to

jurisdiction, they cover various aspects of exchange operations.

One of them is the solvency requirement, also known as

Proof of Reserve. This was introduced following the Mt.Gox

incident, where they did not have enough Bitcoin to pay their

customers. Dagher et al. proposed a method using Merkle

Trees to provide proof of an exchange’s balance [52]. Several

exchanges have extended this method with zero-knowledge

proof techniques to show their solvency [53], [54]. In the US,

an accountants’ organization has established auditing standards

[55]. Some auditors even require exchanges to demonstrate the

actual withdrawal to verify the possession of private keys.

Another regulation is the requirement for cold wallets.

Similar to the air-gap practice of PKI, some countries mandate

that the majority of a cryptocurrency exchange’s assets be

stored in cold wallets. For instance, in Japan, more than

95% of assets [56] must be managed in cold wallets. Cold

wallets are defined there as electronic devices that have never

been connected to the Internet [57]. This means that devices

requiring online activation or attestation cannot be used as cold

wallets in Japanese exchanges. This strict regulation played a

crucial role in safeguarding the assets of Japanese customers

during the collapse of FTX in 2022 [58].

Furthermore, additional requirements may be applied, such

as the involvement of multiple individuals for initiating cryp-

tocurrency transfers or creating backups for signing keys.

V. ANALYSIS OF KNOWN TYPES OF WALLETS

A. Software Wallets

1) Overview: A software wallet is the simplest type of

wallet implementation. It can generate and manage private

keys on a computer and sign transactions. The idea of software

wallets can be traced back to the original Bitcoin client written

in C++ by Satoshi Nakamoto. Nowadays, there are various

developers who provide software wallets that support different

types of cryptocurrencies or tokens. Software wallets can

come in different forms, such as desktop applications, browser

extensions, and mobile apps for smartphones.

Software wallets are closely connected to blockchain nodes.

In many blockchain systems, referencing block information

is essential when creating withdrawal transactions. As a re-

sult, many blockchain clients combine both node and wallet

functionalities, although they can still operate independently

if needed. For example, Bitcoin Core can create and manage

multiple wallets and disable wallet functionality for security

purposes [59]. There are different types of nodes, each with

different relationships and risks regarding wallet functionality.

A full node is the most common type of node. It maintains a

complete history of all blocks and transactions, as well as the

latest execution state, such as the UTXOs or the world state.

It is capable of verifying the consistency of new transactions,

making it essential for confirming deposits at exchanges. If

fully synchronized, wallets can generate valid transactions.

However, running a full node may require a significant amount

of storage space. As an example, the Bitcoin blockchain has

exceeded 512 GB as of December 2023 [60].

A lightweight node is suitable for implementing wallets

on systems with limited capacity, such as smartphones. It

retains only the recent blocks and transactions, discarding

older information to fit within a certain storage capacity. How-

ever, this prevents the node from independently verifying the

validity of new transactions, and a wallet could accept invalid

transactions addressed to itself unless relying on a trusted full

node. In Bitcoin-based cryptocurrencies, the Simple Payment

Verification (SPV) protocol allows for the extraction of trans-

actions related to specific monitored addresses from other full

nodes using a Bloom filter. It retains only headers of all past

blocks, and fetches blocks containing transactions of interest as

necessary [20]. There are other distributed ledgers like Ripple,

which do not require synchronization of past ledgers.

An archive node retains all past states in a blockchain

architecture with complex state, such as Ethereum, while

regular nodes retain only the most recent state. Archive nodes

can restore past states and execute function calls on them, such

as checking the owner of a specific NFT at a particular point in

the past. Archive nodes are primarily used for data analysis and

require high performance. For example, Ethereum’s archive

nodes require around 16TB of storage space as of December

2023 [61]. Considering their purpose, it is highly unlikely to

operate wallet functionality on archive nodes.

There are other types of nodes with different network con-

figurations or blockchain designs. For example, mining nodes

specialize in creating blocks in proof-of-work blockchains,

relaying nodes specialize in block propagation, and consensus

nodes in Ethereum specialize in attesting and signing the

verification results of newly proposed blocks. They are not

directly related to wallet functionality.

Conversely, some wallet implementations, such as browser

extensions or smartphone apps, may not be accompanied by

nodes. Similar to lightweight nodes, those nodeless wallets

rely on trusted external nodes via APIs to query cryptocur-

rency balances and broadcast transactions. For example, Khan

et al. developed a nodeless Android wallet that simply uses

QR codes for data exchange [62].

2) Advantages and Disadvantages: Using a software wallet

offers several benefits: (a) users only require a regular com-

puter, eliminating the need for any special devices, (b) software

wallets typically have a fast update cycle, which allows cus-

todians to effortlessly stay updated with new cryptocurrencies

and tokens, the latest DeFi services, and technical updates of

blockchains, and (c) any issues or malfunctions that arise can

be swiftly addressed and resolved.

There are also drawbacks: (d) software wallets are primarily

designed for individuals and may lack enterprise features, such

as complex approval workflows, (e) they are often designed to

be online and the communication is encrypted, making security

control challenging, and (f) they are most susceptible to the

security of running environments.

3) Risks: There are at least two categories of risks associ-

ated with software wallets: (x) caused by the software itself

and (y) caused by the user’s actions or behavior.

x-1) Malicious intent of the developer: The developer or

committer may program the wallet to transfer users’ cryptocur-

rency without consent or send private keys to external parties.

They can achieve this by hiding backdoors in the codebase or

through other open-source software used by the wallet.

x-2) Accidental malfunctioning: B: may become cor-

rupted or disclosed to external parties due to unknown defects.

This can happen due to classical bugs, cryptographic vulner-

abilities, or other reasons.

y-1) Improper settings or incorrect usage: The potential

consequences of errors in software wallet configuration should

not be underestimated, as they can lead to exploitation by

attackers. For instance, Bui et al. demonstrated unauthorized

access to the API of the node without proper authentication

settings [63]. Also, user interface issues may lead to incor-

rect manipulation of the wallet. Extensive research has been

conducted by Voskobojnikov et al. on the usability concerns

associated with software wallets [64].

y-2) Contaminated running environment: Attackers may

use malware to directly access files or memory where secrets

are stored or incorporate keylogging techniques. Horst et al.

conducted an experiment to steal private keys by analyzing

the memory of software wallet processes [65]. Volety et al.

focused on similar attacks using brute force methods [66].

He et al. analyzed various attack vectors targeting Android

wallets [67]. Other malware uses an attack called address

poisoning [68], which exploits human negligence in fully

verifying the displayed address. Ivanov et al. showcased mal-

ware that substitutes the user-copied destination address on the

clipboard with the attacker’s address that partially resembles

the original one [69]. One possible countermeasure for wallet

developers is the implementation of visually distinguishable

representations, akin to the concept of SSH key art [70].

y-3) Using counterfeit software: It is often difficult for

users to differentiate phishing software from the legitimate

one, due to similar names or appearances. This is particularly

prevalent in browser extension wallets [71].

To mitigate risks from (x) and (y), one can consider using

verified releases of open-source software wallets with a mature

community of developers. To minimize the potential impact of

unknown vulnerabilities, it is also advisable to perform code

audits on the codebase and adopt a defense-in-depth approach

by implementing multiple layers of protection.

B. Auxiliary Wallets

1) Overview: Several offline methods are known to keep

wallet information outside of computers. These methods in-

clude writing the information on paper, which is referred to

as a paper wallet, engraving it on a metal plate, known as a

metal wallet, or memorizing it, known as a brain wallet. We

will refer to these methods collectively as auxiliary wallets,

since there is no single term that encompasses all of them.

Auxiliary wallets can hold two types of information:

• Cryptocurrency address or public key

• Private key or information needed to derive it

The former is only used to display one’s own address when

receiving payments from others, and we will not discuss it

further. The latter can be one of the following:
PK: private key in hexadecimal, Base58, or QR code
MNEMO: a sequence of 12 to 24 words (mnemonic)
PWD: password or passphrase
ENC: encrypted or sharded information of the above

2) Common Advantages and Disadvantages: There are

common advantages shared by auxiliary wallets, regardless of

the type of information they hold: (a) these wallets can serve

as backups for software or hardware wallets, protecting against

the risk of wallet loss due to defects or attacks, and (b) the

risk of direct theft via the Internet is low.

However, (c) auxiliary wallets cannot be used standalone

and must be loaded into other wallets for use. As a result, the

auxiliary wallet shares the same risk profile as them.
3) Characteristics by Type of Memory: Physical methods

like paper or metal wallets are highly durable and most

commonly used for PK or MNEMO. QR codes have error

correction capability, making them resilient to partial damage.

Similarly, MNEMO can be restored even with the loss of a

few characters. However, physical wallets require protection

against theft or loss and have lower confidentiality due to the

ease of recovery from accidental video recordings (e.g., [72]).

The brain wallet ensures security as long as the person who

remembers it and their memory are safe. They are commonly

used for MNEMO or PWD. While using a sufficiently secure

password enhances the wallet’s security, sharing it with others

can be inconvenient. Additionally, it can be practically difficult

to segregate the information among multiple individuals. For

example, a malicious one may be able to recover the other

half if simply splitting it in half. While these wallets excel in

confidentiality compared to physical wallets, availability may

be compromised. To complement this, Sans et al. suggested

storing MNEMO on a special blockchain using the owner’s

email address as the lookup key [73]. This approach can be

theoretically applied to other types of information as well,

while it relies on the security of the mail system and the

specific blockchain, making it less universally applicable.
4) Characteristics by Type of Information: Modern soft-

ware wallets encode the seed using MNEMO, while initially

PK was the primary option in the early days of Bitcoin.

The transition was due to privacy concerns as reusing cryp-

tocurrency addresses is generally discouraged [74]. BIP-32

defines an algorithm for a hierarchical deterministic (HD)

wallet and can derive a series of signing keys and addresses

deterministically from a seed using the HMAC algorithm [75].

Each word for MNEMO is selected from a pre-defined set of

2048 words and represents 11 bits of information, as defined in

B: Backup Key
This is your backup private key, encrypted with your wallet password.

Data:

{"iv":"nunZorW4lvKcdcgNL26G7Q==","v":1,"iter":10000,"ks":256,"ts":64,"mode"

:"ccm","adata":"","cipher":"aes","salt":"W7aDZr2Fjvg=","ct":"wN90ujJLz7BnFw

9qyDeg53eGGL90gQ2hjlhsImqEkkEGvCYlyF+kMLTwEPC9J4KivmevGJHJJNg67rfN7BgrXOhtS

IrrdgJaNG+lHtERNlQMadPMjFvi41hMic2JQpHy8aeJ1txhelx9DfWk6l4XJHR/13hkePo="}

C: BitGo Public Key
This is the public part of the key that BitGo will use to co-sign transactions
with you on your wallet.

Data:

xpub661MyMwAqRbcG2CSVfLY2asMwhgjq9irL5cpSyVmiFZyzaEn9SNCdeDT3iroZZDkYPfCRKh

q9TqK4yb6oaPgVRGxNF4fn9GGKJCJZwDGKgY

Fig. 4. Example of an Encrypted Paper Wallet

BIP-39 [76]. Excluding the checksum, a specific permutation

of 12 words encodes 256 bits of data. The use of recognizable

words is similar to concepts like PGP Word [77]. Although

mnemonics can be easily memorized, there is a risk of theft

if observed by individuals with exceptional instant memory.

PWD, in conjunction with the type of function and salt, can

uniquely derive a wallet by a key derivation function such as

PBKDF2 or scrypt. However, in reality, weak passwords have

been commonly used, resulting in immediate attacks [78].

The ENC, example shown in Figure 4, is generated by

encryption or secret sharing algorithms. This approach en-

hances protection against theft or loss, but necessitates the

secure management of both the ciphertext and the password

separately, resulting in an increased number of concerns.

C. Use of a Hardware Security Module

1) Overview: Devices equipped with secure cryptoproces-

sors are called Hardware Security Modules (HSMs). HSMs

are implemented as self-contained units with well-defined

interfaces, and they fit into the model depicted in Figure 1.

In the PKI industry, HSMs have been widely used for

cryptographic key management. CAs operate HSMs in secure

environments usually through closed air-gapped networks.

HSMs are also utilized in the communication and financial

sectors for high-performance online processing. Cloud vendors

provide virtual HSM appliances to meet such demand.

Shbair et al. implemented key management for Ethereum

using a cloud HSM [79]. Alrubei et al. employed an HSM

for a private blockchain tailored for enterprise purposes [80].

There are also public cases where cryptocurrency custodians

employ HSMs [81]. Dornseifer et al. provide a tutorial for

signing Ethereum transactions using AWS KMS [82].

2) Advantages:

a) Tamper Resistance: When an HSM detects tampering

attempts, including electrical analysis, the decryption key for

the internal storage is promptly erased. The administrator can

recover the decryption key from an external backup medium,

only after verifying the integrity of the HSM [83]. This pro-

vides an equilibrium between confidentiality and availability.

b) Reliability: HSMs that have undergone security au-

dit and examination can be considered reliable. The quality

of HSMs is ensured through established standards such as

ISO/IEC 19790 [84], FIPS 140-3 [17], and the Common

Criteria. These standards specify requirements from various

aspects including interface, authentication, operating envi-

ronments, and more. In the US, the Cryptographic Module

Validation Program (CMVP) [85] verifies and certifies the

implementation of cryptographic modules. While the primary

purpose of CMVP is to approve the use of modules by

government agencies, certified HSMs are also widely trusted

and utilized for non-governmental purposes.

c) Resilience against Attacks: Although there are known

attacks against HSMs, such as the method proposed by Bardou

et al. for deducing keys from publicly accessible interfaces

[86], the range of attack methods is relatively restricted. The

requirement for a well-defined interface and physical resilience

is a substantial deterrent to potential attackers.

3) Disadvantages:

d) Lack of Cryptographic Algorithm Support: Cryptocur-

rencies often use ECDSA on the secp256k1 curve or EdDSA

on the Curve25519. There are few certified HSMs available

that support these algorithms, primarily because those curves

were approved by the US government in 2023 [18] after feed-

back from the industry [87]. Additionally, we could not find

HSMs on the market that support sr25519 used in Polkadot,

or BLS signatures [88] adopted in Ethereum’s beacon chain.

Other researchers also pointed out the limited availability of

HSMs with fairly new cryptographic algorithms [89].

e) Lack of Mechanisms for Cryptocurrency: Modern

wallets often use HD wallets to derive multiple cryptocur-

rency addresses, but few HSMs support it. Mnemonics as

in BIP-39 are also rarely supported. This is because those

cryptocurrency-specific features are currently out of the scope

of HSM’s standards. Some HSMs offer the ability to define

custom mechanisms, but it is the user’s responsibility to ensure

that such customization does not undermine security [90].

f) Storage Capacity: HSMs are often constrained by their

internal storage capacity, which is often tens of thousands of

keys per unit in higher-grade HSMs. This limitation can pose

practical challenges for custodians with multiple cryptocurren-

cies and seeds to manage a large number of users. Han et al.

proposed a method to expand the storage capacity of HSMs

by combining them with Intel SGX [91]. Utilizing HSMs in

the cloud can also alleviate these constraints.

g) Cost: Enterprise-grade products often exceed ten

thousand USD in price per unit.

D. Hardware Wallets

1) Overview: Hardware wallets are specialized devices

designed for the secure storage of cryptocurrencies. These

devices come in various types. Some basic hardware wallet

models consist of a simple circuit with a microcontroller,

while more advanced models have a similar structure to HSMs.

Many products are designed to be used via a USB interface

from a computer with vendor-provided software. Arapinis et

al. provided a formalized model of hardware wallets [92].

One early example of a hardware wallet was proposed

by Bamert et al. [93]. It communicates over Bluetooth with

payment terminals, such as point-of-sale (POS) devices. The

device receives an unsigned transaction from the payment

terminal, signs the transaction, and returns it to the terminal.

Another implementation, proposed by Rezaeighaleh et al.

[94], is a smartcard wallet that can be used together with

an Android smartphone. They also suggested a method for

backing up the key between multiple cards using a classical

key exchange technique. Furthermore, there are numerous

commercial hardware wallet products available.

2) Advantages and Disadvantages: Most hardware wallets

are designed to be user-friendly. The benefits of using them

include: (a) the intuitive nature of storing the private key

in a physical device, (b) ready-to-use software that many

vendors provide, (c) specialized firmware for cryptocurrency

use, and (d) faster firmware update cycles to keep up with the

emergence of new cryptocurrencies. These benefits come from

fewer design constraints for vendors compared to HSMs.

Drawbacks include (e) the requirement of trust in the vendor

for the product’s integrity, (f) the lack of enterprise features,

similar to software wallets, and (g) the risk of complications

in the segregation of signing power in an enterprise setup.

3) Risks: Hardware wallets share similar risks with soft-

ware wallets. The following are particular observations:

x-1) Risks in Firmware and Circuitry: Hardware wallets

may come with firmware that behaves differently from the

user’s expectation. One manufacturer of hardware wallets

announced a key backup service and proposed an optional

firmware update. This announcement raised concerns among

users, as it implied the existence of a function to extract

signing keys from the device, which was initially advertised

as impossible [95]. The firmware’s source code needs to

be publicly available and audited to address these concerns,

and preferably, the user should be able to program the user-

built firmware. Verification of the hardware circuitry may be

necessary to take the utmost precaution.

y-2) Susceptibility to Attacks: Unlike FIPS-certified

HSMs, which adhere to widely accepted technical standards,

the security of hardware wallets is not standardized, and

their quality can vary. For example, several attempts were

made on KeepKey and Trezor through electrical analysis and

signal manipulation by different researchers [96]–[98]. Ledger

Nano S, which internally uses a TEE (described in the next

section), was examined by Volokitin, and they demonstrated

the memory access across the protection boundary [99].

y-3) Risks in Procurement: Volokitin suggests that gen-

uine hardware wallets can be compromised by preloading

malicious code during shipping [99]. There have been in-

stances where cryptocurrencies were stolen through counterfeit

hardware wallets that resemble reputable products [100].

E. TEE-based Wallets

One approach to creating a wallet on a computer without

relying on a dedicated cryptographic processor involves the

utilization of a Trusted Execution Environment (TEE). By

establishing a TEE on a regular CPU, the signing system

can be built under this protection mechanism. Within the

TEE, verified software with digital signatures operates in

logical isolation from other applications [101]. Depending on

the implementation, the hardware memory is partitioned and

encrypted. Some researchers investigated Arm TrustZone or

Intel SGX for implementing wallets [102], [103].

Advantages of TEE-based wallets include (a) the security

compared to software wallets, mitigating the risk of coun-

terfeiting and vulnerabilities to some extent, and (b) their

versatility, as they can be deployed on various platforms.

However, there are some disadvantages; (c) the cost of

developing TEE-based software can be significant due to

programming constraints, (d) users need to trust the processor

vendor, similar to hardware wallets, and (e) certain security

precautions need to be made as there have been reported

instances of attacks [104]. Schaik et al. stated the ability

to decrypt transactions on the Secret Network, a confidential

blockchain platform [105].

F. Smart Contract Wallets

1) Overview: On some blockchains such as Ethereum

[106], one can write a program known as a smart contract

to directly manipulate cryptocurrencies. It can be used for

managing assets automatically on behalf of the user.

One example is Safe Contracts [107], an open-source con-

tract for on-chain treasury management. It allows users to

specify various conditions for cryptocurrency withdrawals,

such as the authorization settings of requesters, the definition

of a maximum withdrawal limit, and the restriction of the

withdrawal destination address. Similarly, Uniswap, a decen-

tralized exchange (DEX), operates entirely through a smart

contract governing the deposit and withdrawal processes. This

design minimizes human intervention.

Vitalik et al. have proposed the idea of social recovery

wallets [108], designed with individual use in mind. This

mechanism allows a specific signing key to be used for regular

withdrawals, while a pre-registered set of other keys, called

guardians, can reset to a different key on behalf of the wallet

owner in case of an emergency. This concept can also be

extended to wallet contracts used by custodians.

2) Risks: A reentrancy bug in The DAO, one of the earliest

DeFi projects, allowed attackers to drain funds in 2016 [109].

The following year, a vulnerability in Parity, a smart contract

wallet widely used by individuals, caused a freeze on funds.

These cases highlight the significant risk caused by implemen-

tation errors in smart contracts. Praitheeshan et al. conducted

a systematic analysis of smart contract vulnerabilities [110].

Given the inherent risks associated with contract defects, it

is crucial to ensure the safety of smart contract wallets [111].

Bhargavan et al. proposed the use of F★ for the formal proof

of smart contracts [112]. Jiang et al. introduced a tool called

ContractFuzzer for automated vulnerability discovery [113].

He et al. emphasized the importance of code audit by employ-

ing tools such as Oyente and Mythril [114]. Praitheeshan et al.

used these tools to evaluate smart contracts used by custodians

[115]. Cassez et al. formally evaluated the Ethereum virtual

machine using Dafny [116].

Nevertheless, key management remains essential to initiate

withdrawals from the smart contract wallets. They do not

eliminate the necessity of key management.

G. Splitting Signing Power

Various techniques have been developed to partition the

signing key into multiple components, enabling the distri-

bution of signing power among multiple individuals, either

through cryptographic or systematic mechanisms. The gener-

alized approach requires " participants out of # shares.

When implemented correctly, these techniques offer re-

dundancy of signers and prevent a few individuals from

having complete control over the signing power. However, as

discussed in Section III-C, setting # = " increases the risks

against availability, and having # significantly larger than "

does against confidentiality.

The following are the notable techniques to split the power:

1) Multi-Signatures: In Bitcoin-based cryptocurrencies,

one can create "-of-# multi-signature addresses. Another

cryptocurrency, Flow, allows users to register any number of

public keys for an account with weights. Withdrawals from

Flow accounts can only be made if accompanied by digital

signatures that exceed a certain weight threshold [117]. These

are implemented natively on the blockchain in a systematic

way to simply verify " signatures but have the drawback

to users where the transaction size increases linearly with " .

Multi-signature is not universally available in key management

since Ethereum and some others do not natively support it.

2) Secret Sharing: Shamir proposed a method to split a

secret into multiple shares [6]. This method requires a trusted

party, as it divides the complete secret during the initial

splitting and combines the " shares to recover the secret. The

trusted party must be safeguarded when used in SIG-SYS.

There is also a variant that does not rely on a trusted party.

Pedersen introduced Distributed Key Generation (DKG) in

the construction of Verifiable Secret Sharing schemes, where

participants can maintain their secret shares while proving the

integrity of the combined secret [118].

3) Threshold Signature Scheme: Bitcoin has introduced

the Schnorr signature [119], allowing for the non-interactive

combination of multiple independent digital signatures without

increasing the signature size [120]. A multi-signature scheme

built on this has also been proposed [121], [122], although it

is limited to a configuration where all participants must sign.

There are several other researches on interactive threshold

signature schemes that do not rely on a trusted third party,

extending DKG [123]–[125]. These multi-party computation

schemes are suitable for scenarios where key shares are

generated and managed individually by different officers.

However, those known methods require multiple rounds of

communication among signers to create a single signature.

Additionally, there have been frequent studies on attack meth-

ods, such as [126]. Some implementations were reported to be

vulnerable due to insufficient verification [127]. We think that

further examination is necessary to adopt these techniques in

cryptocurrency custodians.

H. Custodial Wallet

Custodial wallets involve the delegation of signing keys

or key shares to a third party. For individuals, this typically

entails depositing cryptocurrency into their personal account at

a cryptocurrency exchange. Likewise, exchanges and institu-

tional investors may entrust their key management to custodial

service providers instead of handling the keys themselves.
In custodial wallets, the security of signing keys relies on

the goodwill of the service provider. Antonopoulos argues

that relying on custodial services to store cryptocurrency

introduces a risk that is beyond the control of individual users

[128]. He advocates for the use of hardware wallets, which

emphasize the importance of owning the private keys.
Enterprise users of custodial wallets typically evaluate the

risk based on the financial statements and SOC2 reports of the

service providers. However, they may lack a comprehensive

understanding of the detailed security measures. To mitigate

this opaque risk, enterprise users may seek legal remedies such

as insurance coverage for the funds held in custody.

VI. EVALUATION CRITERIA OF SIGNING SYSTEMS

Cryptocurrency custodians have the flexibility to combine

various wallet techniques discussed earlier to build their own

signing system. We provide examples of evaluation criteria

that encompass common tasks performed by custodians.

A. Withdrawal

Evaluating withdrawal scenarios is critical, as it is likely to

be the most frequently performed task. The requirements may

vary depending on the wallet configuration or business needs.

The following are typical scenarios for withdrawals.

• Scheduled withdrawals conducted on a regular basis from

a cold wallet to a hot wallet, or the other way around.

This process maintains a certain reserve in the hot wallet,

ensuring that automatic withdrawals can be made to users.

• Unplanned withdrawals conducted when the balance in

the hot wallet falls below a predetermined threshold,

usually during times of cryptocurrency price instability.

The following enumerate some perspectives for evaluation:
1) Security: The potential attack vectors should be exam-

ined, including through defined interfaces or physical threats.
2) Turnaround time: The total amount of time required

for a single signing attempt should be assessed. Cold wallets

generally take longer turnaround times.
3) Scalability: The capacity, which refers to the number of

keys that a system can hold, as well as performance, which

refers to the number of signing attempts that can be processed

per unit of time, should be measured.
4) Cost: Custodians may aim to reduce the ongoing ex-

penses related to equipment and maintenance, while usually

justifiable at a certain level of initial investment.

B. Prediction and Response to Abnormality

Even with sufficient measures and risk control in place,

system failures or security breaches can still occur. It is

important to predict such signs and evaluate the impact, as

well as estimate the time and cost required for recovery.

1) Ease of Incident Detection: The architecture of the

signing system should be evaluated for its ability to detect

abnormalities. For example, a hot wallet can have a separate

system to monitor the outputs and automatically disconnect it

if needed, while a cold wallet can have more basic techniques

like surveillance cameras.

2) Complexity of Emergency Response: The signing system

can have a panic button, even if a significant portion of the

assets were to be drained under the attacker gaining control

of the key. There might be a possibility to minimize the

damage by promptly and securely evacuating the remaining

assets using uncompromised keys.

C. Updating the System

Blockchain systems frequently undergo updates to their

protocols, often in the form of soft forks to ensure compati-

bility. Some notable examples include Segregated Witness in

Bitcoin [129] and the updates to transaction fee specifications

in Ethereum [130]. These updates involve changes to the

transaction format. Another significant update was The Merge

in Ethereum, which had a substantial impact on the blockchain

architecture [131]. The Nem to Symbol migration also falls

into this category. On the other hand, the Taproot update in

Bitcoin did not immediately affect the withdrawal process

[132], and various other updates occur regularly.

Updating software and hardware firmware is important

for addressing vulnerabilities and adopting the latest spec-

ifications. However, it should be done cautiously to avoid

compromising system security. Custodians should consider

postponing updates unless security is immediately at risk. This

helps minimize vulnerabilities introduced during the update.

1) Frequency: The frequency of mandatory system updates

should be anticipated while designing wallets. This includes

operating system or firmware updates for hot wallets and

facility maintenance for cold wallets.

2) Ease of Updates: The complexity and safety of the

update process should be evaluated, which includes verifying

the integrity of the software or establishing a clear procedure.

3) Vendor Dependency: Custodians should assess whether

it is acceptable to be locked into a specific vendor due

to unique features offered by certain wallet products. This

evaluation should consider trust, cost, support, and others.

VII. IMPLEMENTATION EXAMPLE: EXTREME-COLD

A. Overview

In this section, we will introduce a reference implementation

of a cold wallet called EXTREME-COLD. This implementation

is based on the background and security considerations dis-

cussed so far. The main objective of this demonstration is to

ensure maximum transparency in risk management.

To fully explore the concepts discussed in the first half of

this paper, we assume a complex environment and a scenario

with human involvement, as depicted in Figure 2 (a). While

there are similarities to the Faraday cage method employed

by a US exchange mentioned by Simonite [133], no specific

details were provided in his article. The method described

Metal detector gate

+ 1 safebox

CCTV

Two media
in TEB

Terminal Printer

Fig. 5. Example of KMF Setup

here is based on the author’s own considerations. Previous

studies have explored the extraction of private keys from air-

gapped environments [43], [134], and we will also discuss

countermeasures against such attacks.

B. Facilities and Equipment

1) Key Management Facility: To effectively manage the

signing keys, a physically secure room is essential, namely key

management facility (KMF). Figure 5 illustrates the example

configuration. It is necessary to establish two or more KMFs in

multiple geographically separate facilities due to the potential

impact of disasters, as well as the possibility of destructive

behavior by staff members within a KMF.

It is crucial to take appropriate physical and logical security

measures for KMFs. For example, the US federal government

has established structural requirements for high-security facil-

ities [135]. We compiled a checklist for KMFs in Table I.

A KMF needs to equip a locker with # + 1 or more

compartments. Among them, # compartments are used to

securely store # secret shares, which are recorded on separate

storage media. The other compartment, preferably a larger one,

is used to store an operating terminal and a printer. The key to

each compartment with a secret share should be solely held by

a corresponding treasurer, while the key to the compartment

with the devices can be duplicated among all treasurers.

To mitigate the risk of side-channel attacks and unauthorized

data extraction, it is recommended to enforce a policy that

prohibits the presence of personal electronic devices. This

policy can be enforced through the use of metal detectors.

2) Operating Terminal and Printer: In each KMF, a trusted

computer, an operating terminal, and a printer need to be

equipped for handling the private key. These devices can be

any commonly available products, but they must be procured

through a secure supply chain. Upon preparation, certain

components of the operating terminal, such as the battery,

storage, communication modules, and audio devices, must be

removed. This eliminates the risk of side-channel attacks and

removes the capability to persist data across multiple signing

sessions. The exchange of information between the operating

terminal and outside the KMF is accomplished through QR

TABLE I
SECURITY CONSIDERATIONS OF KMF

P
h
y

si
ca

l
p

er
sp

ec
ti

v
es

Fire Does the KMF have a gaseous fire suppression system?
Water
damage

Does the KMF locate on a higher floor to prevent flood-
ing? Is waterproofing treatment made against leaks?

Structure Does the KMF meet building code against seismic or
hurricane damage?

Power
supply

Are there emergency power sources for access control,
monitoring, and lighting? Is the lightning protection in
place for electrical system?

Interior
elements

Is the KMF finished by non-combustible and robust
materials that can withstand destructive acts?

Windows Is the KMF free of windows? Are there wire mesh or
other physical blockade in place for any openings?

Access
routes

Is there only one normal access route to the KMF?
Are doors and emergency exits designed to be unlocked
only from the inside during emergencies?

Signs Are there no visible indications of the KMF inside or
outside the building?

Alarms Does the building have an alarm system for emergen-
cies?

L
o

g
ic

al
p

er
sp

ec
ti

v
es Authenti-

cation
Are all persons entering the KMF authenticated by mul-
tiple factors such as ID cards, passcodes or biometric?
Are records retained for a certain period?

Access
control

Is there a technical control in place to prohibit single
occupancy in the KMF?

Surveil-
lance

Can the KMF be monitored by cameras, incuding
during power outages? Is the video footage retained?

Metal
detection

Is there a metal detector to prevent unauthorized bring-
ing in or taking out of electronic equipment?

codes that are printed on paper. Therefore, a built-in camera

is required for the operating terminal.

The operating terminal executes programs for KeyGen and

Sign. These programs can be implemented in any arbitrary

way. We provide our implementation for reference [136],

which is a custom Linux image with a key management

program. IANA has also been developing COEN [137] in the

same manner to operate the HSM from the offline terminal.

The integrity of these devices is critical. Therefore, the

devices must be securely stored in lockers to prevent tampering

while not in use, and the hash value of the running software

must be verified when operating.

3) Storage Media: A private key is divided into # shares

in our approach. Each of those shares corresponds to a

different treasurer one-to-one. Each share is recorded on a

storage medium, e.g., a USB memory stick, and duplicated

into at least two copies for redundancy. These copies are then

securely placed in a tamper-evident bag (TEB) and stored in

the corresponding treasurer’s compartment when not in use.

Additionally, an exact duplicate set of TEBs is prepared for

each KMF as a backup.

C. Human Involvement

Our approach requires the participation of " out of #

treasurers to conduct the signing process. Each treasurer is

accountable for securing their specific portion of the key,

which is stored in individual compartments among every KMF.

Such a control policy that requires multiple persons for a

process, commonly referred to as two-person integrity (or

more), is not only adopted by US government agencies but

also by other high-security facilities.

Inside KMF 1 (out of k)

N treasurers

KeyGen program

№ 1

(k-1) replicas

shares

Public key Exception to

KMF 2

KMF k

Regenerate the key if

№ N

1. Generate keypair

2. Split private key into N shares

3. For N: save private shares

4. Save public key

5. Erase memory and power-off
metal detection any accidents occur.

Transport to other

N private

Terminal KMFs.

Fig. 6. Outline of KeyGen process

TABLE II
EXAMPLES OF FRAUD TRIANGLE

Motivation • Greed to a large amount of cryptocurrency.
• Discontent or resentment towards the company.

Opportunity The physical presence to the operating terminal with the
signing key loaded.

Justification • “My salary is not high. I shouldn’t be blamed for a
procedural error.”

• “I am not treated fairly by the management. They
deserve what they get.”

1) Prevention of Fraudulent Behavior and Collusion:

Cressey identified the conditions for fraudulent behavior, some

of which include the motivation to commit fraud, the oppor-

tunity to commit fraud, and the presence of rationalization or

justification [138]. These are now widely known as the fraud

triangle [139]. Table II shows examples of elements of fraud

that can occur in a KMF.

When the likelihood ? of an individual attempting fraud is

uniform across all members, one can calculate the probability

that " out of # members collude at a specific point in time

as a simple binomial probability shown in (1). This is useful

for quantifying the potential fraud risk.

� =

(

#

"

)

?" (1 − ?)#−" (1)

In reality, it may be infeasible to assume that ? is equal to all

treasurers due to environmental reasons, such as professional

or personal relationships, salary disparities, and hierarchical

differences. A sufficient " may be alternatively decided

based on the number of approvers required for legal currency

disbursement, for instance.

2) Prevention of Operational Errors: As a separate per-

spective from intentional misbehavior, there is a possibility

that humans may make mistakes due to unintentional errors

when performing tasks. Additionally, there is a possibility of

forgetting procedures due to the psychological pressure of

handling important equipment. Therefore, we have prepared

a work progress checklist.

D. KeyGen – Key Generation

As depicted in Figure 6, all # treasurers gather in one

KMF to generate a private signing key and split it into

shares on the operating terminal. Once all the shares

are physically transported to the other KMF(s), KeyGen is

considered complete.

1) Generating Random Number: As stated in Section III-A,

the entropy source used to generate a private signing key

should ideally be completely random. We adopted OpenSSL’s

CTR_DRBG implementation, which is one of the deterministic

random bit generation algorithms that conforms to NIST SP

800-90A, hence FIPS 140-2. Other options include using a

true random number generator device or a stream cipher.

Regarding CTR_DRBG, while Campagna illustrated a vul-

nerability where the expected randomness is not achieved

when the key length is other than 112 bits [140], it can be

resolved fairly easily by initializing the algorithm with new

seeds until reaching the desired length since most cryptocur-

rencies use signing keys with no more than a few hundred

bits. Woodage et al. discussed vulnerabilities when the internal

state of RNGs can be observed and examined the OpenSSL

implementation [141]. However, this will not be a major issue,

considering that KeyGen in our method is done on the air-

gapped operating terminal in the KMF. Strenzke also examined

OpenSSL’s random algorithm implementation [142].

2) Sharding the Secret: We split the signing key using

Shamir’s method, which allows us to divide the key in a

way that is not dependent on the type of blockchain or the

signing algorithm being used. The benefit of this approach

is the simplicity of the algorithm, hence a lower risk of

implementation errors. There is no need for VSS or MPC since

we trust the operating terminal’s integrity.

3) Distribution of the Private Signing Key: All treasurers

transport the signing key to each KMF(s). Once all KMFs have

successfully equipped the generated key in their respective

compartments without any issues, the corresponding cryp-

tocurrency address can be considered ready for use. Any risk

of transportation accidents is discussed in Section VIII-A3.

Sign program

Online terminal

Unsigned
M treasurers

1. Load QR code

2. For M: load shares

3. Restore key and sign

4. Print signed QR code

5. Erase memory and power-off

№ 1

№ M

Signed

Blockchain
network

Any KMF Terminal

Fig. 7. Outline of Sign process

E. Sign – Signing Transactions

As depicted in Figure 7, the treasurers bring the unsigned

transaction into the KMF to conduct a withdrawal. This serves

as the input for Sign. The signing process takes place on the

operating terminal under the supervision of multiple treasurers.

Once completed, the signed transaction is taken outside with

the treasurers and broadcasted to the blockchain network.

1) Preparing the Unsigned Transaction Outside KMF: One

of the treasurers prepares the withdrawal transaction to be

signed outside the KMF using a fully-synchronized online

blockchain node. The transaction is converted into a QR code

and printed on paper, preferably along with human-readable

details for verification by other treasurers.

2) Entering the KMF: Any combination of " treasurers

enter the KMF to sign the transaction together. Entry and

exit to the KMF are prohibited throughout the entire process

to prevent unauthorized actions, such as tampering with QR

codes or taking out the running operating terminal with the

signing key loaded.

3) Signing Process: The treasurers use an operating termi-

nal to sign the transaction.

1) Scan the QR code and decode the transaction.

2) Verify the amount and destination of the transfer.

3) Restore the signing key from " key shards.

4) Sign the transaction.

5) Encode the signed transaction into a QR code.

6) Print the QR code on a sheet of paper.

7) Power off the operating terminal.

In step 2 above, the treasurers must ensure that the encoded

data in the QR code exactly matches the expected withdrawal

details, i.e., the destination and the amount, without any

additional metadata or information. In step 3, each of the "

treasurers retrieves their respective key shard, loads it into the

operating terminal, returns the shard to its compartment, and

securely locks it.

4) Exiting the KMF and Broadcasting the Transaction:

After the printed QR code is carried out from the KMF, one

of the treasurers scans and loads it to an online blockchain

node, and broadcasts it to the blockchain network. The sheet

with the QR code may be disposed of.

F. Response to Abnormal Situations

1) Failure of a Single Medium: If a treasurer’s medium

is faulty, the treasurer can duplicate the other medium in the

same compartment for recovery. The faulty medium should

be completely destroyed. If both media are faulty, the shard

needs to be recreated by using other treasurers’ media, similar

to the KeyGen procedure. Any further failures than # − "

sets should be treated as equivalent to the next case, where the

key is unrecoverable and a new key needs to be generated.
2) Disaster Affecting KMF: If more than # − " sets of

treasurer keys are damaged, it can be assumed that the key in

the affected KMF is essentially lost.

The safest approach is to establish a new KMF, either

temporarily or permanently, and generate a new key by the

KeyGen process. The funds in the impacted address should be

transferred to the new address to minimize any remaining risk.

Additionally, stakeholders who know the old address, such as

liquidity providers, should be notified of the new address.

Alternatively, the integrity of the impacted KMF can be

restored, and the key can be duplicated from another reliable

KMF. The transportation of the live operational key will be

discussed in the following section.
3) Loss or Theft of Media: If any media are unexpectedly

lost, regardless of the number of affected shards, the key

should be considered compromised. In such cases, it is impor-

tant to generate a new signing key. The recovery procedure

does not differ from the previous case.

G. Alternative Implementations and Comparison

1) Using Simpler KMF: Building a robust KMF can be

a challenging task and may not be feasible in some cases.

Despite the theoretical increase in vulnerability to side-channel

attacks or even the risk of physical brute-force intrusions, it

may still be possible to utilize lightweight facilities if proper

alternative controls are implemented.

It is particularly crucial to consider measures to prevent

theft. In the original method, the key was stored on a medium

and was not bound to any cryptoprocessors, unlike the security

offered by an HSM or a hardware wallet. With those devices,

the key would remain protected even if the device were stolen,

ensuring that it does not become compromised immediately.

2) Using an HSM: There are a few general-purpose HSMs

available on the market that support cryptocurrencies. When

using such HSMs, the seed for key derivation is generated

and stored internally within the HSM, and the signing key is

ephemerally derived on demand. The benefits of using HSMs

in EXTREME-COLD are that the physical operation can be

simplified and there is no longer a need for # + 1 lockers;

instead, only a safe to store the HSM is required. Furthermore,

the KeyGen and Sign software only need to send commands

to the HSM using Cryptoki in PKCS #11 [143].

However, using HSMs does not necessarily simplify human

involvement. FIPS-140 defines Security Levels, and typically

Level 3 or Level 4 is used for high-security environments,

which require strict authentication to access the protected

storage of the HSM. In an "-of-# authentication configu-

ration, the protected storage of the HSM is encrypted with the

keys that are distributed and stored in smartcards or dedicated

tokens. This process is no different from our approach and

presents similar challenges when personnel changes occur.

In a real-world example, an HSM certified as Level 4 is

used in Root KSK management. The decryption key to the

Root KSK on the HSM is divided into multiple smartcards

held by Crypto Officers (COs) using a 3-of-7 configuration.

Every time an HSM is operated or any CO is replaced, three

or more COs travel to the facility.

3) Use of a hardware wallet: Instead of using storage

media or HSMs, an alternative option is to utilize hardware

wallets, accepting the risks discussed in the earlier section.

Most hardware wallet products generate an HD wallet using

a mnemonic phrase, and they often provide a function to

display the mnemonics for backup purposes. To align with

this product design, a custodian should choose a 24-word

mnemonic phrase to minimize the risk of any treasurer remem-

bering it. The mnemonic phrase should then be backed up as

auxiliary wallets, preferably on physical materials. Treasurers

should ensure that the wallet remains out of the view of CCTV

cameras. It is also worth noting that implementing "-of-#

authentication can be technically challenging, especially since

hardware wallets are typically protected by a single password.

+ 1 lockers may be unsuitable as well.

In terms of scalability, many hardware wallet products

have limitations on the number of cryptocurrencies that can

be supported by a single unit due to capacity constraints.

Therefore, if a custodian intends to host many keys across

multiple blockchains, they should consider procuring multiple

units to distribute the keys accordingly.

4) Storage Media options: Appropriate storage media for

storing the key may need to be procured based on the

organization’s choice. To enhance confidentiality, one can use

removable media with hardware encryption, as demonstrated

in [144]. For higher durability, one can use industrial-grade

devices with more stable memory cells. To maintain firm

integrity, one can use write-once memory, such as the one

described in [145]. Unfortunately, during our investigation, we

could not find any products that possess all these features.

Certain compromises may be necessary in reality.

5) KeyGen and Sign program on TEE: In our approach,

we implemented software that runs as a regular program on

the operating terminal. However, it is important to note that

the key in its complete form will exist in memory during

the operation as we utilized Shamir’s secret sharing scheme.

This introduces a security risk if a treasurer were to take

such a terminal outside of the KMF with the power still

on. Implementing the software to operate in a TEE may

help reduce such risk of extracting the key from the running

terminal, although the development cost may increase.

VIII. EVALUATION OF EXTREME-COLD

A. Security

We are confident that EXTREME-COLD has effectively

mitigated various known attacks, including side channels that

exploit visual, electromagnetic, or audio vulnerabilities, which

previous studies have identified as potential attack vectors.

In the following paragraphs, we will discuss the additional

considerations and the reasoning behind our approach.

1) Metal detection: The implementation of a metal detec-

tion gate serves as a preventive measure against the inadvertent

or deliberate introduction or removal of items to or from the

KMF. For example, smartphones, which can be used for side-

channel attacks, and removable media, which can be swapped

with genuine ones in the compartment, should be prohibited.

There are some exceptions. Physical keys of the lockers,

unless they are dial locks, and media of software and keys in

transit should be allowed. For the latter, the media should be

securely enclosed in a plastic case and placed inside the TEB.

This is to prevent the use of metal probes to read the media

without damaging the TEB.

2) Treasurer’s Misconduct: KeyGen is performed by #

treasurers, and Sign is performed by " treasurers together.

There is still a possibility that one of them may engage in

misconduct during the process.

In order to maintain the confidentiality of the signing key,

it is recommended to start the KeyGen process from the

beginning if any misconduct is suspected. Similarly, in the case

of Sign, a responsible treasurer should forcefully shut down

the operating terminal to clear the loaded key from memory.

3) Physical Transportation of the Key during KeyGen: To

mitigate the risk of accidents during transit, such as loss or

unauthorized access outside the KMF, treasurers should ensure

the integrity of all key shares in the TEB at each KMF before

putting the key into operation. Treasurers at every KMF are

required to verify the absence of any defects in the TEBs

by cross-checking with one another. In the event that any

defects are detected, the key must be regenerated from scratch.

This transportation method for critical keys, yet naive, is also

employed in the management of Root KSK in DNSSEC [14].

4) Physical Transportation of the Operational Key after

Anomaly: In principle, it is not safe to transport the operational

key outside the KMF, yet the well-established method of

key distribution can be used to duplicate the key from the

operational KMFsrc to the damaged KMFdst.

After the safety of KMFdst is confirmed, " treasurers

together can perform the following method:

1) Generate an encryption keypair (4:, 3:) in KMFdst.

2) To prevent the substitution of 4: , have multiple treasur-

ers transport it from KMFdst to KMFsrc.

3) Once the integrity of 4: is confirmed in KMFsrc, encrypt

B: with 4: into a cipher 2 on the terminal.

4) Safely transport 2 back to KMFdst and decrypt with 3: .

Reshard the resulting B: to an "-of-# configuration,

and store them in the compartments.

This method of key transportation is similar to the repli-

cation of keys between HSMs, where the destination HSM

generates a wrapping key to create a secure transport channel

between HSMs. Similar to Diffie-Hellman key exchange, it is

vulnerable to man-in-the-middle attacks, so the integrity of 4:

must be independently ensured.

5) Exfiltration of Key Information by Malicious Software:

Naor et al. proposed a method of performing secret shar-

ing using visual methods [146]. As an application of this,

steganography using single or multiple QR codes has been

studied to embed confidential information [147], [148]. It is

challenging to differentiate QR codes with hidden information

from regular ones, as the only indication is the presence

of more error cells in the resulting QR codes. It is critical

to ensure the integrity of QR-code processing algorithms to

prevent the embedding of private keys during the generation

and printing of signed transactions.

6) CCTV Recorded Footage: Despite having strict physical

security measures in place for KMF, there is still an exploitable

information channel in the form of the surveillance camera.

The surveillance camera footage is crucial as evidence for in-

vestigating any potential misconduct, so it cannot be excluded

from the requirements. To ensure the secrecy of the keyboard

input for the KMF, we have implemented a screen filter on

the operation terminal and a cover to hide the keyboard input.

B. Turn-around time

We have built a mockup facility and conducted an experi-

ment. Our setup targeted the Bitcoin Testnet with a configura-

tion of three treasurers threshold out of four (# = 4, " = 3).

We have learned from the experiment that KeyGen is quite

time-consuming. On average around three attempts, it took

about 50 minutes to generate a signing key in the first KMF,

and about 35 minutes to store it in the second KMF (we reused

the same room for budget reason) except the transportation.

We observed several factors for this long duration, such as (1)

the necessity to rigorously verify the integrity of the media

and the key, and (2) the mental pressure on the participants of

performing important but unfamiliar tasks.

In terms of Sign, out of 15 attempts, the first two attempts

to sign a single transaction took over an hour from entry to

exit at the KMF. However, as the participants got familiar with

the process, they were able to finish it in 30 minutes for the

last six attempts. We consider this acceptable as cold wallet

operability in normal cryptocurrency exchanges.

C. Scalability

In EXTREME-COLD, an HD wallet can be used to generate

multiple cold addresses from a single private key, although

we have not experimented. It is technically possible to store

multiple keys on a single medium, allowing the management

of various addresses from different seeds and blockchains.
In terms of signing performance, this method allows for

the simultaneous signing of multiple transactions in batches.

One way to streamline the process is by sequentially scanning

QR codes that encode transaction data. However, if frequent

withdrawals from cold storage are necessary, it may be worth

considering the much use of a hot wallet.

D. Cost

The initial setup cost of the equipment, including computers,

printers, storage media, and CCTVs, amounted to approxi-

mately 3,000 USD in our experiment. These devices typically

have a long lifespan, which makes the cost justifiable.
The facility rent for the KMF is a major recurring expense

that greatly impacts the overall cost of this design. If the KMF

is implemented as a colocation in a data center, the monthly

cost can vary from a few thousand dollars. One way to reduce

the cost is by using typical racks as lockers. Another option

is to utilize an office room, which we have chosen.

E. Ease of Predicting Fraud

The KMF facility may be equipped with traditional intrusion

prevention measures like door sensors and CCTV, which can

promptly identify intruders in real-time. These measures also

serve as an audit trail in case of any fraudulent activities.
Additionally, this approach incorporates cross-checking be-

havior into various operational procedures, such as sealing

media in TEBs, storing them in compartments, and using metal

detectors. This ensures that the responsible treasurer can easily

detect any inappropriate behavior or misconduct.

F. Updates

1) Replacement of Treasurers (Changing #): Staff re-

placements are a common occurrence in organizations. When

adding a new treasurer, the existing " treasurers are required

to restore the key at the KMF and create a new shard for

the new treasurer. On the other hand, if a treasurer retires

and the number of treasurers decreases, but not below " ,

simply destroying the contents of the retiree’s compartment

will suffice. These actions need to be carried out in each KMF.

In cases of staff replacement, the process can be as simple as

the departing person handing over the locker’s key or dial

combination to the new one, though the verification of the

contents of the locker is encouraged.
2) Change of Threshold (Changing "): Changing the

required number of treasurers from "old to "new is more

complicated due to the properties of Shamir’s secret sharing.

To implement this change, all # people need to be present,

restore the keys with "old people, and then recreate shards so

that the threshold becomes "new. Additionally, all # old media

in each compartment must be destroyed. The same should be

done for all KMFs, respectively.

3) Addition of Signing Keys: KeyGen must be done every

time when adding a new signing key, for example, for a

new wallet, a new cryptocurrency, or a new blockchain. This

process does not impact the existing keys.

4) Software Updates: The potential impact caused by pro-

tocol updates on cryptocurrencies or blockchains is straight-

forward. The organization needs to (1) create updated software

for KeyGen or Sign, (2) check the correctness of the algo-

rithm, and (3) ensure its integrity with hash or code-signing.

(4) The updated software should be brought into the KMF

using a storage medium, such as USB memory sticks in a TEB,

to replace the old media. The old media should be destroyed.

G. Vendor Dependence

This approach is independent of any particular vendors

for equipment or devices. The physical construction of the

KMF may pose a significant challenge if there is a need

for migration, but it can be established in any location. The

operating terminal, printer, media, TEBs, and other equipment

used in the KMF do not have specific requirements and can

be compatible with a variety of products.

IX. CONCLUSION

Cryptocurrencies have gained widespread usage, with cryp-

tocurrency custodians playing a significant role in this ecosys-

tem. While some enthusiasts oppose the trend towards cen-

tralization, the majority of users currently entrust their cryp-

tocurrencies to exchanges in reality. Cryptocurrency custodians

must therefore securely manage customers’ assets.

In this paper, we have discussed the security and risk

management of wallet implementation by modeling it as SIG-

SYS. We have also heavily focused on cold wallet practices as

a rational approach for handling significant assets. However,

several open issues still need to be addressed, for example:

1) Implementing a Lightweight Cold Wallet: We acknowl-

edge that the operations involved in the referential example

EXTREME-COLD are resource-intensive. Further research is

needed to explore lighter management methods that allow

companies to easily implement cold wallets while ensuring

security and effectively controlling risks.

2) Efficient Wallet Operations: We have not discussed

the asset management aspect across wallets, particularly in

terms of balancing or timing transfers between hot and cold

layers. We believe that different types of businesses have

different practices in this regard, such as centralized exchanges

with consumers, liquidity providers that deal with large-lot

transfers, or decentralized exchanges. Additionally, lending or

staking options of cryptocurrencies may also impact these

practices. Unfortunately, we could not find any relevant lit-

erature on this specific topic.

3) Non-Fungible Types of Assets: Our method focused

on major cryptocurrencies, such as native tokens of popular

blockchains, or ERC-20 and compatible tokens that can be

managed using regular wallets. However, non-fungible tokens

(NFTs) have gained attention since 2021, and other derived

tokens are actively being developed [149]. An example is

real-world assets (RWAs) backed by off-chain assets, such as

gold, bonds, and real estate [150]. These types of assets are

inherently unique and may require different practices.

REFERENCES

[1] W. Fumy and P. Landrock, “Principles of key management,” IEEE

Journal on Selected Areas in Communications, vol. 11, no. 5, pp. 785–
793, 1993.

[2] G. R. Blakley, “Safeguarding cryptographic keys,” in 1979 Inter-

national Workshop on Managing Requirements Knowledge (MARK),
1979, pp. 313–318.

[3] S. Eskandari, D. Barrera, E. Stobert, and J. Clark, “A first look at
the usability of bitcoin key management,” 2015. [Online]. Available:
https://www.ndss-symposium.org/ndss2015/ndss-2015-usec-program
me/first-look-usability-bitcoin-key-management/

[4] Z. Jaroucheh and B. Ghaleb, “Crypto assets custody: Taxonomy, com-
ponents, and open challenges,” in 2023 IEEE International Conference

on Blockchain and Cryptocurrency (ICBC), 2023, pp. 1–6.
[5] G. J. Popek and C. S. Kline, “Encryption and secure computer

networks,” ACM Comput. Surv., vol. 11, no. 4, pp. 331–356, dec 1979.
[6] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,

pp. 612–613, nov 1979.
[7] ASC X9, ANSI X9.17, Financial Institution Key Management

(Wholesale). American Bankers Association, Apr. 1985. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub171.
pdf

[8] P. Zimmermann, PGP Source Code and Internals. Mit Press, 1995.
[9] S. Capkun, L. Buttyán, and J. P. Hubaux, “Self-organized public-

key management for mobile ad hoc networks,” IEEE Transactions on

Mobile Computing, vol. 2, no. 1, pp. 52–64, 2003.
[10] ITU-T, “X.509 (10/19) : Information technology – Open Systems

Interconnection – The Directory: Public-key and attribute certificate
frameworks,” Oct. 2019.

[11] R. Charette, “DigiNotar certificate authority breach crashes e-
government in the Netherlands,” IEEE Spectrum, 2011.

[12] CAB Forum, “Baseline requirements for the issuance and management
of publicly-trusted certificates - version 2.0.1,” p. 42, Aug. 2023.

[13] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends, “RFC
4033, DNS Security Introduction and Requirements,” Mar. 2005.

[14] IANA, “Key signing ceremonies.” [Online]. Available: https:
//www.iana.org/dnssec/ceremonies

[15] E. Barker, SP 800-57, Recommendation for Key Management: Part 1 –

General. National Institute of Standards and Technology, May 2020.
[16] E. Barker, M. Smid, D. Branstad, and S. Chokhani, SP 800-130, A

Framework for Designing Cryptographic Key Management Systems.
National Institute of Standards and Technology, Aug. 2013.

[17] J. Wilbur L. Ross and W. Copan, FIPS 140-3, Security Requirements

for Cryptographic Modules. National Institute of Standards and
Technology, Mar. 2019.

[18] G. M. Raimondo and L. E. Locascio, FIPS 186-5, Digital Signature

Standard (DSS). National Institute of Standards and Technology, Feb.
2023.

[19] S. Bellovin and R. Housley, “RFC 4107, Guidelines for Cryptographic
Key Management,” Jun. 2005.

[20] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[21] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,

and M. Virza, “Zerocash: Decentralized anonymous payments from
Bitcoin,” in 2014 IEEE Symposium on Security and Privacy, 2014, pp.
459–474.

[22] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in 2015 IEEE Symposium on Security and Privacy,
2015, pp. 104–121.

[23] S. Suratkar, M. Shirole, and S. Bhirud, “Cryptocurrency wallet: A
review,” in 2020 4th International Conference on Computer, Commu-

nication and Signal Processing (ICCCSP), 2020, pp. 1–7.
[24] Y. Erinle, Y. Kethepalli, Y. Feng, and J. Xu, “Sok: Design,

vulnerabilities, and security measures of cryptocurrency wallets,” Jul.
2023. [Online]. Available: https://arxiv.org/abs/2307.12874

[25] P. Alpeyev and Y. Nakamura, “How to launder $500 million in digital
currency,” Jan. 2018. [Online]. Available: https://www.bloomberg.co
m/news/articles/2018-01-29/how-to-launder-500-million-in-digital-c
urrency-quicktake-q-a

[26] W. Zhao, “Crypto exchange zaif hacked in $60 million bitcoin theft,”
Sep. 2018. [Online]. Available: https://www.coindesk.com/markets/2
018/09/20/crypto-exchange-zaif-hacked-in-60-million-bitcoin-theft/

[27] OSC, “QuadrigaCX: A review by staff of the Ontario Securities
Commission,” Apr. 2020. [Online]. Available: https://www.osc.ca/qua
drigacxreport/

[28] FTX, “Exhibit A – Document #1242, Attachment #1,” Apr. 2023, case
22-11068-JTD. United States Bankruptcy Court, District of Delaware.

[29] M. D. Detmer, “Petition for appointment of receiver, temporary in-
junction, and other permanent relief,” Jun. 2023, case A-23-872963-B.
Eighth Judicial District Court, Clark County, Nevada.

[30] K. Oosthoek and C. Doerr, “From hodl to heist: Analysis of cyber
security threats to Bitcoin exchanges,” in 2020 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC), 2020, pp. 1–9.
[31] R. Chandramouli, M. Iorga, and S. Chokhani, Cryptographic Key

Management Issues and Challenges in Cloud Services. Springer New
York, 2014, pp. 1–30.

[32] I. Kuzminykh, B. Ghita, and S. Shiaeles, “Comparative analysis of
cryptographic key management systems,” in Internet of Things, Smart

Spaces, and Next Generation Networks and Systems, O. Galinina,
S. Andreev, S. Balandin, and Y. Koucheryavy, Eds. Cham: Springer
International Publishing, 2020, pp. 80–94.

[33] S. Xiao, W. Gong, D. Towsley, Q. Zhang, and T. Zhu, “Reliability anal-
ysis for cryptographic key management,” in 2014 IEEE International

Conference on Communications (ICC), 2014, pp. 999–1004.
[34] S. Rana, F. K. Parast, B. Kelly, Y. Wang, and K. B. Kent, “A

comprehensive survey of cryptography key management systems,”
Journal of Information Security and Applications, vol. 78, p. 103607,
2023.

[35] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE

Transactions on Software Engineering, vol. SE-3, no. 2, pp. 125–143,
1977.

[36] D. L. Evans, P. J. Bond, and A. L. Bement, Jr., FIPS 199, Standards

for Security Categorization of Federal Information and Information

Systems. National Institute of Standards and Technology, Feb. 2004.
[37] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic

concepts and taxonomy of dependable and secure computing,” IEEE

Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, 2004.

[38] M. Warkentin and C. Orgeron, “Using the security triad to assess
blockchain technology in public sector applications,” International

Journal of Information Management, vol. 52, p. 102090, 2020.
[39] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the Linux

random number generator,” in 2006 IEEE Symposium on Security and

Privacy (S&P’06), 2006.
[40] L. Dorrendorf, Z. Gutterman, and B. Pinkas, “Cryptanalysis of the

random number generator of the Windows operating system,” in ACM

Trans. Inf. Syst. Secur., vol. 13, no. 1, nov 2009.
[41] Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung, “Practical leakage-

resilient pseudorandom generators,” in Proceedings of the 17th ACM

Conference on Computer and Communications Security, ser. CCS ’10.
Association for Computing Machinery, 2010, pp. 141–151.

[42] ISE, “Ethercombing: Finding secrets in popular places,” Apr. 2019.
[Online]. Available: https://www.ise.io/casestudies/ethercombing/

[43] M. Guri, “BeatCoin: Leaking private keys from air-gapped cryptocur-
rency wallets,” in 2018 IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-

SCom) and IEEE Smart Data (SmartData), 2018, pp. 1308–1316.
[44] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital

signature algorithm (ECDSA),” International Journal of Information

Security, vol. 1, 2001.
[45] D. Boneh and R. Venkatesan, “Hardness of computing the most

significant bits of secret keys in Diffie-Hellman and related schemes,”
in Advances in Cryptology — CRYPTO ’96, N. Koblitz, Ed. Springer
Berlin Heidelberg, 1996, pp. 129–142.

[46] T. Pornin, “RFC6979, Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm
(ECDSA),” Aug. 2013.

[47] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and
MtGox,” in Computer Security - ESORICS 2014, M. Kutyłowski and
J. Vaidya, Eds. Cham: Springer International Publishing, pp. 313–326.

[48] “IEEE standard for general requirements for cryptocurrency ex-
changes,” IEEE Std 2140.1-2020, 2020.

[49] Y. Tsuchiya and N. Hiramoto, “How cryptocurrency is laundered: Case
study of Coincheck hacking incident,” Forensic Science International:

Reports, vol. 4, p. 100241, 2021.
[50] “Exchanges which let you create multiple deposit addresses,” Nov.

2020. [Online]. Available: https://bitcointalk.org/index.php?topic=52
92667

[51] T. Hardjono, A. Lipton, and A. Pentland, “Wallet attestations for
virtual asset service providers and crypto-assets insurance,” May 2020.
[Online]. Available: https://arxiv.org/abs/2005.14689

[52] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provi-
sions: Privacy-preserving proofs of solvency for bitcoin exchanges,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’15. Association for Computing
Machinery, 2015, pp. 720–731.

[53] OKX, “Proof of reserves.” [Online]. Available: https://www.okx.com/
proof-of-reserves

[54] Binance, “Proof of reserves.” [Online]. Available: https://www.binanc
e.com/en/proof-of-reserves

[55] AICPA, “Accounting for and auditing of digital assets, practice aid,”
p. 60, Jul. 2023, aU Chapter 2, IV-A.

[56] “Cabinet office order on cryptoasset exchange service providers,” Mar.
2017, article 27, paragraph (2) and (3). [Online]. Available: https:
//www.japaneselawtranslation.go.jp/en/laws/view/4315#je ch2at15

[57] Financial Services Agency of Japan, “Guideline for supervision of
crypto-asset exchange service providers,” p. 46, Jun. 2021, iI-2-2-3-2
(3) (v). [Online]. Available: https://www.fsa.go.jp/common/law/guide
/kaisya/e016.pdf

[58] J. Koning, “Japan was the safest place to be an ftx customer,” Dec.
2022. [Online]. Available: https://www.coindesk.com/consensus-mag
azine/2022/12/13/japan-was-the-safest-place-to-be-an-ftx-customer

[59] A. M. Antonopoulos, Mastering Bitcoin. O’Reilly Media, Inc., 2014.
[60] Blockchain.com, “Blockchain size.” [Online]. Available: https:

//www.blockchain.com/explorer/charts/blocks-size
[61] Etherscan, “Ethereum full node sync (archive) chart.” [Online].

Available: https://etherscan.io/chartsync/chainarchive
[62] A. G. Khan, A. H. Zahid, M. Hussain, and U. Riaz, “Security of cryp-

tocurrency using hardware wallet and QR code,” in 2019 International

Conference on Innovative Computing (ICIC), 2019, pp. 1–10.
[63] T. Bui, S. P. Rao, M. Antikainen, and T. Aura, “Pitfalls of open

architecture: How friends can exploit your cryptocurrency wallet,” in
Proceedings of the 12th European Workshop on Systems Security, ser.
EuroSec ’19. Association for Computing Machinery, 2019.

[64] A. Voskobojnikov, O. Wiese, M. Mehrabi Koushki, V. Roth, and K. K.
Beznosov, “The U in crypto stands for usable: An empirical study of
user experience with mobile cryptocurrency wallets,” in Proceedings

of the 2021 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’21. Association for Computing Machinery, 2021.

[65] L. Van Der Horst, K.-K. R. Choo, and N.-A. Le-Khac, “Process
memory investigation of the Bitcoin clients Electrum and Bitcoin
Core,” IEEE Access, vol. 5, pp. 22 385–22 398, 2017.

[66] T. Volety, S. Saini, T. McGhin, C. Z. Liu, and K.-K. R. Choo, “Cracking
bitcoin wallets: I want what you have in the wallets,” Future Generation

Computer Systems, vol. 91, pp. 136–143, 2019.
[67] D. He, S. Li, C. Li, S. Zhu, S. Chan, W. Min, and N. Guizani, “Security

analysis of cryptocurrency wallets in Android-based applications,”
IEEE Network, vol. 34, no. 6, pp. 114–119, 2020.

[68] MetaMask, “Address poisoning scams.” [Online]. Available: https:
//support.metamask.io/hc/en-us/articles/11967455819035

[69] N. Ivanov and Q. Yan, “EthClipper: A clipboard meddling attack on
hardware wallets with address verification evasion,” in 2021 IEEE

Conference on Communications and Network Security (CNS), 2021,
pp. 191–199.

[70] A. Perrig and D. Song, “Hash visualization : a new technique to
improve real-world security,” International Workshop on Cryptographic

Techniques and E-Commerce, vol. 25, 1999.
[71] A. Sarkar, “MetaMask scammers take over government websites

to target crypto investors,” Sep. 2023. [Online]. Available: https:
//cointelegraph.com/news/metamask-scam-government-websites-crypt
o-investors

[72] S. Ro, “Bloomberg’s Miller Bitcoin gift stolen,” Dec. 2013. [Online].
Available: https://www.businessinsider.com/bloomberg-matt-miller-bit
coin-gift-stolen-2013-12

[73] T. Sans, Z. Liu, and K. Oh, “A decentralized mnemonic backup sys-
tem for non-custodial cryptocurrency wallets,” in Foundations and

Practice of Security, G.-V. Jourdan, L. Mounier, C. Adams, F. Sèdes,
and J. Garcia-Alfaro, Eds. Cham: Springer Nature Switzerland, 2023,
pp. 355–370.

[74] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in Financial Cryptography and

Data Security, A.-R. Sadeghi, Ed. Springer Berlin Heidelberg, 2013,
pp. 34–51.

[75] P. Wuille, “Hierarchical deterministic wallets.” [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

[76] M. Palatinus, P. Rusnak, A. Voisine, and S. Bowe, “Mnemonic
code for generating deterministic keys.” [Online]. Available: https:
//github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

[77] P. Juola and P. Zimmermann, “Whole-word phonetic distances and the
PGPfone alphabet,” in Proc. 4th International Conference on Spoken

Language Processing (ICSLP 1996), 1996, pp. 98–101.

[78] M. Vasek, J. Bonneau, R. Castellucci, C. Keith, and T. Moore, “The
bitcoin brain drain: Examining the use and abuse of bitcoin brain
wallets,” in Financial Cryptography and Data Security, J. Grossklags
and B. Preneel, Eds. Springer Berlin Heidelberg, 2017, pp. 609–618.

[79] W. M. Shbair, E. Gavrilov, and R. State, “HSM-based key manage-
ment solution for Ethereum blockchain,” in 2021 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1–3.

[80] S. Alrubei, E. Ball, and J. Rigelsford, “Adding hardware security into
IoT-blockchain platforms,” in 2022 IEEE Latin-American Conference

on Communications (LATINCOM), 2022, pp. 1–6.

[81] Thales, “Securing digital currency with bitgo multi-signature and
thales hsms - solution brief,” Feb. 2020. [Online]. Available: https:
//cpl.thalesgroup.com/resources/encryption/bitgo-hsm-solution-brief

[82] D.-P. Dornseifer and T. von Bomhard, “How to sign ethereum
eip-1559 transactions using aws kms,” Feb. 2022. [Online]. Available:
https://aws.amazon.com/jp/blogs/database/how-to-sign-ethereum-eip
-1559-transactions-using-aws-kms/

[83] Thales, “Tamper, secure transport, and purple ped keys.” [Online].
Available: https://thalesdocs.com/gphsm/luna/6.3/docs/usb/Content/ove
rview/security features/purple keys tamper and secure-transport.htm

[84] ISO/IEC 19790:2012 – Information technology – Security techniques

– Security requirements for cryptographic modules. International
Organization for Standardization, Aug. 2012.

[85] NIST, “Cryptographic module validation programs.” [Online].
Available: https://csrc.nist.gov/projects/cryptographic-module-val
idation-program

[86] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and J.-
K. Tsay, “Efficient padding oracle attacks on cryptographic hardware,”
in Advances in Cryptology – CRYPTO 2012, R. Safavi-Naini and
R. Canetti, Eds. Springer Berlin Heidelberg, 2012, pp. 608–625.

[87] “Public comments received on draft nist sp 800-186: Recommendations
for discrete logarithm-based cryptography: Elliptic curve domain
parameters,” Jan. 2020. [Online]. Available: https://csrc.nist.gov/files
/pubs/sp/800/186/final/docs/sp800-186-draft-comments-received.pdf

[88] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” in Advances in Cryptology — ASIACRYPT 2001, C. Boyd,
Ed. Springer Berlin Heidelberg, 2001, pp. 514–532.

[89] K. Chalkias, F. Garillot, Y. Kondi, and V. Nikolaenko, “Non-interactive
half-aggregation of eddsa and variants of schnorr signatures,” in Topics

in Cryptology – CT-RSA 2021, K. G. Paterson, Ed. Cham: Springer
International Publishing, 2021, pp. 577–608.

[90] Thales, “Functionality modules.” [Online]. Available: https://thalesdocs
.com/gphsm/luna/7/docs/network/Content/Product Overview/fms.htm

[91] J. Han, S. Kim, T. Kim, and D. Han, “Toward scaling hardware
security module for emerging cloud services,” in Proceedings of the

4th Workshop on System Software for Trusted Execution, ser. SysTEX
’19. Association for Computing Machinery, 2019.

[92] M. Arapinis, A. Gkaniatsou, D. Karakostas, and A. Kiayias, “A formal
treatment of hardware wallets,” in Financial Cryptography and Data

Security, I. Goldberg and T. Moore, Eds. Cham: Springer International
Publishing, 2019, pp. 426–445.

[93] T. Bamert, C. Decker, R. Wattenhofer, and S. Welten, “Bluewallet: The
secure bitcoin wallet,” in Security and Trust Management, S. Mauw and
C. D. Jensen, Eds. Cham: Springer International Publishing, 2014,
pp. 65–80.

[94] H. Rezaeighaleh and C. C. Zou, “New secure approach to backup cryp-
tocurrency wallets,” in 2019 IEEE Global Communications Conference

(GLOBECOM), 2019, pp. 1–6.

[95] A. Sarkar, “Ledger co-founder clarifies ‘there is no backdoor’
in ‘Recover’ firmware update,” May 2023. [Online]. Available:
https://cointelegraph.com/news/ledger-co-founder-clarifies-there-is-n
o-backdoor-in-recover-firmware-update

[96] J. Datko, C. Quartier, and K. Belyayev, “Breaking Bitcoin hardware
wallets,” Jul. 2017. [Online]. Available: https://media.defcon.org/D
EF%20CON%2025/DEF%20CON%2025%20presentations/DEF%20C
ON%2025%20-%20Datko-and-Quartier-Breaking-Bitcoin-Hardwar
e-Wallets.pdf

[97] A. Gkaniatsou, M. Arapinis, and A. Kiayias, “Low-level attacks in
bitcoin wallets,” in Information Security, P. Q. Nguyen and J. Zhou,
Eds. Cham: Springer International Publishing, 2017, pp. 233–253.

[98] D. Park, M. Choi, G. Kim, D. Bae, H. Kim, and S. Hong, “Stealing keys
from hardware wallets: A single trace side-channel attack on elliptic
curve scalar multiplication without profiling,” IEEE Access, vol. 11,
pp. 44 578–44 589, 2023.

[99] S. Volokitin, “Software attacks on hardware wallets,” Aug. 2018.
[Online]. Available: https://i.blackhat.com/us-18/Wed-August-8/us-1
8-Volokitin-Software-Attacks-On-Hardware-Wallets-wp.pdf

[100] S. Golovanov, “Case study: fake hardware cryptowallet,” May 2023.
[Online]. Available: https://www.kaspersky.com/blog/fake-trezor-har
dware-crypto-wallet/48155/

[101] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution en-
vironment: What it is, and what it is not,” in 2015 IEEE Trust-

com/BigDataSE/ISPA, vol. 1, 2015, pp. 57–64.
[102] M. Gentilal, P. Martins, and L. Sousa, “TrustZone-backed Bitcoin

wallet,” in Proceedings of the Fourth Workshop on Cryptography

and Security in Computing Systems, ser. CS2 ’17. Association for
Computing Machinery, 2017, pp. 25–28.

[103] N. Lehto, K. Halunen, O.-M. Latvala, A. Karinsalo, and J. Salo-
nen, “CryptoVault - a secure hardware wallet for decentralized key
management,” in 2021 IEEE International Conference on Omni-Layer

Intelligent Systems (COINS), 2021, pp. 1–4.
[104] S. Fei, Z. Yan, W. Ding, and H. Xie, “Security vulnerabilities of sgx

and countermeasures: A survey,” ACM Comput. Surv., vol. 54, no. 6,
jul 2021.

[105] S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, C. Garman,
D. Genkin, A. Miller, E. Ronen, and Y. Yarom, “Sok: Sgx. fail: How
stuff get exposed,” 2022. [Online]. Available: https://sgx.fail/

[106] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” 2014.

[107] “Safe contracts.” [Online]. Available: https://github.com/safe-global/sa
fe-contracts

[108] V. Buterin, “Why we need wide adoption of social recovery wallets,”
Jan. 2021. [Online]. Available: https://vitalik.ca/general/2021/01/11/re
covery.html

[109] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust, M. Maffei
and M. Ryan, Eds. Springer Berlin Heidelberg, 2017, pp. 164–186.

[110] P. Praitheeshan, L. Pan, J. Yu, J. K. Liu, and R. Doss, “Security
analysis methods on ethereum smart contract vulnerabilities: A survey,”
Aug. 2019. [Online]. Available: http://arxiv.org/abs/1908.08605

[111] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and
R. Hierons, “Smart contracts vulnerabilities: a call for blockchain
software engineering?” in 2018 International Workshop on Blockchain

Oriented Software Engineering (IWBOSE), 2018, pp. 19–25.
[112] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,

G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, “Formal verification of smart
contracts: Short paper,” in Proceedings of the 2016 ACM Workshop

on Programming Languages and Analysis for Security, ser. PLAS ’16.
Association for Computing Machinery, 2016, pp. 91–96.

[113] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineer-

ing, ser. ASE ’18. Association for Computing Machinery, 2018, pp.
259–269.

[114] D. He, Z. Deng, Y. Zhang, S. Chan, Y. Cheng, and N. Guizani, “Smart
contract vulnerability analysis and security audit,” IEEE Network,
vol. 34, no. 5, pp. 276–282, 2020.

[115] P. Praitheeshan, L. Pan, and R. Doss, “Security evaluation of smart
contract-based on-chain ethereum wallets,” in Network and System

Security, M. Kutyłowski, J. Zhang, and C. Chen, Eds. Cham: Springer
International Publishing, 2020, pp. 22–41.

[116] F. Cassez, J. Fuller, M. K. Ghale, D. J. Pearce, and H. M. Quiles,
“Formal and executable semantics of the Ethereum virtual machine in
Dafny,” in Formal Methods, M. Chechik, J.-P. Katoen, and M. Leucker,
Eds., vol. 14000 LNCS. Cham: Springer International Publishing,
2023, pp. 571–583.

[117] Flow, “Accounts.” [Online]. Available: https://developers.flow.com/bu
ild/basics/accounts

[118] T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Advances in Cryptology — CRYPTO ’91,
J. Feigenbaum, Ed. Springer Berlin Heidelberg, 1992, pp. 129–140.

[119] C. P. Schnorr, “Efficient identification and signatures for smart cards,”
in Advances in Cryptology — EUROCRYPT ’89, J.-J. Quisquater and
J. Vandewalle, Eds. Springer Berlin Heidelberg, 1990, pp. 688–689.

[120] P. Wuille, J. Nick, and T. Ruffing, “Schnorr signatures for secp256k1.”
[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-0
340.mediawiki

[121] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Simple schnorr
multi-signatures with applications to Bitcoin,” Designs, Codes, and

Cryptography, vol. 87, 2019.
[122] J. Nick, T. Ruffing, and Y. Seurin, “MuSig2: Simple two-round

Schnorr multi-signatures,” in Advances in Cryptology – CRYPTO

2021, T. Malkin and C. Peikert, Eds. Cham: Springer International
Publishing, 2021, pp. 189–221.

[123] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ECDSA
with fast trustless setup,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’18.
Association for Computing Machinery, 2018, pp. 1179–1194.

[124] Y. Lindell and A. Nof, “Fast secure multiparty ecdsa with practical
distributed key generation and applications to cryptocurrency custody,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’18. Association for Computing
Machinery, 2018, pp. 1837–1854.

[125] J. Doerner, Y. Kondi, E. Lee, and abhi shelat, “Threshold ECDSA in
three rounds,” Cryptology ePrint Archive, Paper 2023/765, May 2023.
[Online]. Available: https://eprint.iacr.org/2023/765

[126] J.-P. Aumasson and O. Shlomovits, “Attacking threshold wallets,”
Cryptology ePrint Archive, Paper 2020/1052, Sep. 2020. [Online].
Available: https://eprint.iacr.org/2020/1052

[127] N. Makriyannis and O. Yomtov, “Gg18 / gg20 tss beta parameter
vulnerability,” Aug. 2023. [Online]. Available: https://www.cve.org/
CVERecord?id=CVE-2023-33241

[128] A. M. Antonopoulos, Apr. 2016. [Online]. Available: https:
//twitter.com/aantonop/status/720784384572465152

[129] E. Lombrozo, J. Lau, and P. Wuille, “Segregated witness (consensus
layer).” [Online]. Available: https://github.com/bitcoin/bips/blob/maste
r/bip-0141.mediawiki

[130] V. Buterin, xEric Conner, R. Dudley, M. Slipper, I. Norden, and
A. Bakhta, “Eip-1559: Fee market change for eth 1.0 chain.” [Online].
Available: https://eips.ethereum.org/EIPS/eip-1559

[131] “The merge.” [Online]. Available: https://ethereum.org/roadmap/merge/
[132] P. Wuille, J. Nick, and A. Towns, “Taproot: Segwit version 1 spending

rules.” [Online]. Available: https://github.com/bitcoin/bips/blob/maste
r/bip-0341.mediawiki

[133] T. Simonite, “Why you need a physical vault to secure a virtual
currency,” Aug. 2018. [Online]. Available: https://www.wired.com/st
ory/coinbase-physical-vault-to-secure-a-virtual-currency/

[134] A. Davenport and S. Shetty, “Air gapped wallet schemes and private
key leakage in permissioned blockchain platforms,” in 2019 IEEE

International Conference on Blockchain (Blockchain), pp. 541–545.
[135] NCSC, “Technical specifications for construction and management

of sensitive compartmented information facilities, version 1.5,” Mar.
2020. [Online]. Available: https://www.dni.gov/files/Governance/IC-T
ech-Specs-for-Const-and-Mgmt-of-SCIFs-v15.pdf

[136] Y. Takei, “Operating environment for EXTREME-COLD.” [Online].
Available: https://github.com/takeiyuto/extreme-cold

[137] IANA, “Root ksk ceremony operating environment.” [Online].
Available: https://github.com/iana-org/coen

[138] D. R. Cressey, Other People’s Money: A Study in the Social Psychology

of Embezzlement. Free Press, 1953.
[139] A. Schuchter and M. Levi, “The fraud triangle revisited,” Security

Journal, vol. 29, 2016.
[140] M. J. Campagna, “Security bounds for the nist codebook-based

deterministic random bit generator,” IACR Cryptology ePrint Archive,
2006. [Online]. Available: https://eprint.iacr.org/2006/379

[141] J. Woodage and D. Shumow, “An analysis of NIST SP 800-90A,” in
Advances in Cryptology – EUROCRYPT 2019, Y. Ishai and V. Rijmen,
Eds. Cham: Springer International Publishing, 2019, pp. 151–180.

[142] F. Strenzke, “An analysis of OpenSSL’s random number generator,” in
Advances in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S.
Coron, Eds., vol. 9665. Springer Berlin Heidelberg, pp. 644–669.

[143] C. Zimman and D. Bong, “PKCS #11 Cryptographic Token Interface
Base Specification Version 3.0,” Jun. 2020. [Online]. Available:
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/os/pkcs11-base-v
3.0-os.html

[144] L. M. Bolotin and S. B. Johnson, “Us 9,813,416 b2: Data security
system with encryption,” Nov. 2017. [Online]. Available: https:
//image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/9813416

[145] S. Y. Yu, C. S. Moore, J. S. Whetstone, R. Barzilai, and H. Ino, “Us
8,533,414 b2: Authentication and securing of write-once, read-many
(worm) memory devices,” Sep. 2013. [Online]. Available: https:
//image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/8533414

[146] M. Naor and A. Shamir, “Visual cryptography,” in Advances in

Cryptology — EUROCRYPT’94, A. De Santis, Ed. Springer Berlin
Heidelberg, 1995, pp. 1–12.

[147] T. V. Bui, N. K. Vu, T. T. Nguyen, I. Echizen, and T. D. Nguyen, “Ro-
bust message hiding for QR code,” in 10th International Conference

on Intelligent Information Hiding and Multimedia Signal Processing,
2014, pp. 520–523.

[148] Y.-W. Chow, W. Susilo, G. Yang, J. G. Phillips, I. Pranata, and A. M.
Barmawi, “Exploiting the error correction mechanism in QR codes for
secret sharing,” in Information Security and Privacy, J. K. Liu and
R. Steinfeld, Eds. Cham: Springer International Publishing, 2016, pp.
409–425.

[149] Y. Takei, Complete Guide to the Theory and Practice of NFTs (trans-

lated). Ohmsha, 5 2023.
[150] S. Jagati, “Token adoption grows as real-world assets move on-chain,”

Oct. 2023. [Online]. Available: https://cointelegraph.com/news/token
-adoption-real-world-assets-blockchain

APPENDIX

A. Example of Signed QR Code

For demonstrating the size of the QR code of our method,

we show the actual signed withdrawal transaction on Bitcoin

Testnet in Figure 8. The size of data is 416 bytes, which is

encoded in 69-cell QR code (version 13).

Transaction hash:

47489ba139ca848537ba54829e62f0787d8ea2a3ab

b51b79085c95257dcedf6c

Fig. 8. Example QR Code of a Signed Transaction

